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Absorption Spectroscopy

▪ Measure absorption as a function of frequency

▪ Atoms and Molecules absorb specific frequencies

▪ Strength of absorption corresponds to concentration

▪ Many molecules have strong absorption in the IR
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Why Lasers for Absorption Spectroscopy

▪ Broadband incoherent source can 

identify absorption to infer concentration 

but is limited in resolution

▪ Lasers can be tuned to emit at a specific 

frequency 

▪ High spectral brightness

▪ Controllable tunability 

▪ Resolving absorption frequency with 

increased resolution using the 

source and not the apparatus 
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Consumer Applications of Lasers

▪ Lasers have many consumer applications

▪ Optical lasers used for laser pointers, disc 

drives, etc.

▪ Near IR lasers for telecommunications

▪ No consumer applications of IR lasers
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1990s
Liquid nitrogen-cooled lasers

1980s
Liquid helium-cooled lasers

2000s
Thermoelectrically cooled lasers
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Gas monitoring for manned spacecraft safety and fire detection
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▪ CO is a particularly useful early warning indicator of common combustion hazards

▪ NASA requires improved accuracy, response time, and maintainability compared with existing 

electrochemical sensors

NomexUltem 1000Mylar

Low-gravity combustion tests of 

common spacecraft plastics
International Space Station, March 2011

Credit: NASA Glenn Research Center
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JPL prototype CO monitoring instrument
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▪ Robust 25 cm single-pass absorption cell

▪ QC laser module with integrated TE cooler and room-temperature HgCdTe detector

▪ Tune laser wavelength across a single absorption line
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Comparison with commercial QC laser source
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Hamamatsu commercial QC laser source
Fully packaged JPL QC laser, shown with 

1- and 2-mm lasers on submounts

▪ CW operation: >0.8 A, 10-12 V

▪ Emission wavelength: 4.57 µm 

▪ TEC power: 40 W typical

▪ Module power: 50 W typical

▪ CW operation: <0.25 A, 10-12 V

▪ Emission wavelength: 4.75 µm 

▪ TEC power: up to 4 W

▪ Module power: <7W
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Index-coupled DFB QC lasers fabricated without regrowth
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▪ Alternating layers of two different semiconductors create discrete electron energy levels within 

conduction band

▪ Control energy of radiative transitions

▪ Top-side heat extraction facilitated by thin (~500 nm) SiNx barrier and thick electroplated Au
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Laser fabrication
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Etched laser ridge Mounted laser chip
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Why Cryostat Measurements
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▪ Some of the lasers we fabricate do not lase at room temp.

▪ Losses

▪ Facet Loss

▪ Free Carrier Absorption

▪ Resonant Intersubband Transitions

▪ Waveguide Loss

▪ Metal Contact Absorption

▪ Surface Scattering

▪ The Gain of the laser increases with decreasing temperature

▪ The presence of phonons creates additional energy pathways for electrons that do not 

result in photon emission
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Setup

Laser

Thermopile
FTIR

Cryostat
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DFB QC laser performance: 5 µm ridge, 1-mm cavity length
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CW light-current-voltage performance

Emission spectra

▪ Uncoated facets; electroplated Au top contact

▪ Mounted on Cu submounts epitaxy side up with 

AuSn eutectic solder

▪ Emission at 4.75 µm with grating pitch of 760 nm

T = 100 K
120 K

140 K

160 K

180 K

200 K

220 K
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Processing Issues
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Working Laser Non-Working Laser

▪ No CW laser emission down to 100 K for some lasers

▪ Voltage is strongly temperature dependent and unexpectedly low near room temperature

▪ Could this be related to surface defects created during etching?

▪ Tried fabricating lasers with wet-etched ridges
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Different Etching Methods
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Dry Etched Wet Etched
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Thermal Modeling Of Laser
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Max Temp in Laser Vs. Insulating Layer Thickness

(For Laser Operating at 2 W/mm with Thermal Conductivity of 15 W/(m K))
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Summary
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▪ Processing can cause current pathways that cause low voltages at high temperatures and current 

leakage

▪ Improvements need to be made to fabrication process

▪ Thermal modeling show only small variation in temperature with thermal conductivity and thickness of 

insulating layer

▪ Challenge for QC lasers is power consumption, but improvements are both possible and practical
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