Characterization of Quantum Cascade Laser Wafers

Aaron Sharpe Mentor: Ryan M. Briggs August 8, 2013

Jet Propulsion Laboratory California Institute of Technology

© 2013 California Institute of Technology

Absorption Spectroscopy

- Measure absorption as a function of frequency
- Atoms and Molecules absorb specific frequencies
 - Strength of absorption corresponds to concentration
- Many molecules have strong absorption in the IR

Why Lasers for Absorption Spectroscopy

- Broadband incoherent source can identify absorption to infer concentration but is limited in resolution
- Lasers can be tuned to emit at a specific frequency
 - High spectral brightness
 - Controllable tunability
 - Resolving absorption frequency with increased resolution using the source and not the apparatus

Consumer Applications of Lasers

- Lasers have many consumer applications
- Optical lasers used for laser pointers, disc drives, etc.
- Near IR lasers for telecommunications
- No consumer applications of IR lasers

1980s Liquid helium-cooled lasers

1990s

Liquid nitrogen-cooled lasers

2000s

Thermoelectrically cooled lasers

Gas monitoring for manned spacecraft safety and fire detection

- CO is a particularly useful early warning indicator of common combustion hazards
- NASA requires improved accuracy, response time, and maintainability compared with existing electrochemical sensors

International Space Station, March 2011

Low-gravity combustion tests of common spacecraft plastics

Credit: NASA Glenn Research Center

JPL prototype CO monitoring instrument

- Robust 25 cm single-pass absorption cell
- QC laser module with integrated TE cooler and room-temperature HgCdTe detector
- Tune laser wavelength across a single absorption line

Comparison with commercial QC laser source

Hamamatsu commercial QC laser source

- CW operation: >0.8 A, 10-12 V
- Emission wavelength: 4.57 μm
- TEC power: 40 W typical
- Module power: 50 W typical

Fully packaged JPL QC laser, shown with 1- and 2-mm lasers on submounts

- CW operation: <0.25 A, 10-12 V
- Emission wavelength: 4.75 μm
- TEC power: up to 4 W
- Module power: <7W

Index-coupled DFB QC lasers fabricated without regrowth

- Alternating layers of two different semiconductors create discrete electron energy levels within conduction band
 - Control energy of radiative transitions
- Top-side heat extraction facilitated by thin (\sim 500 nm) SiN_x barrier and thick electroplated Au

Laser fabrication

Etched laser ridge

Mounted laser chip

Why Cryostat Measurements

- Some of the lasers we fabricate do not lase at room temp.
- Losses
 - Facet Loss
 - Free Carrier Absorption
 - Resonant Intersubband Transitions
 - Waveguide Loss
 - Metal Contact Absorption
 - Surface Scattering
- The Gain of the laser increases with decreasing temperature
 - The presence of phonons creates additional energy pathways for electrons that do not result in photon emission

Setup

DFB QC laser performance: 5 µm ridge, 1-mm cavity length

Wavenumber (cm⁻¹)

Jet Propulsion Laboratory

California Institute of Technology

Processing Issues

- No CW laser emission down to 100 K for some lasers
- Voltage is strongly temperature dependent and unexpectedly low near room temperature
- Could this be related to surface defects created during etching?
- Tried fabricating lasers with wet-etched ridges

Jet Propulsion Laboratory

California Institute of Technology

Different Etching Methods

Dry Etched

10 μm

Wet Etched

Jet Pro

Jet Propulsion Laboratory

California Institute of Technology

Max Temp in Laser Vs. Insulating Layer Thickness (For Laser Operating at 2 W/mm with Thermal Conductivity of 15 W/(m K))

Summary

- Processing can cause current pathways that cause low voltages at high temperatures and current leakage
 - Improvements need to be made to fabrication process
- Thermal modeling show only small variation in temperature with thermal conductivity and thickness of insulating layer
- Challenge for QC lasers is power consumption, but improvements are both possible and practical

Ryan Briggs, Clifford Frez, Carl Borgentun, Mahmood Bagheri, and Siamak Forouhar Surf Program, Caltech, and JPL

