Ferromagnetism near three-quarters filling in twisted bilayer graphene

Aaron Sharpe

Caltech February 11th, 2020

10.1126/science.aaw3780

Acknowledgements

Stanford University

Eli Fox Arthur Barnard Joe Finney Marc Kastner David Goldhaber-Gordon

National Institute for Materials Science

Kenji Watanabe Takashi Taniguchi

Thanks

Rupini Kamat, Hava Schwartz, Sungyeon Yang, Anthony Chen, Patrick Gallagher, Allan MacDonald, Ming Xie, Michael Zaletel, Nick Bultinck, Todadri Senthil, Steve Kivelson, Yoni Schattner, Feng Wang, Guorui Chen, Matt Yankowitz, Yuan Cao, Pablo Jarillo-Herrero

Graphene: Scotch Tape Still King

Bae, et. al. Nat. Nanotech (2010)

Halbertal, et. al. Science (2017)

Ballistic Transport

Fractional Quantum Hall

AS Mayorov, et al. Nanoletters (2011)

Hexagonal Boron Nitride (hBN)

Jin et al., Chem. Rev. (2018)

Twisted Bilayer Graphene

Cao, Nature (2018)

Jarillo-Herrero and Kaxiras groups

Cao, Nature (2018)

Jarillo-Herrero and Kaxiras groups

Jarillo-Herrero and Kaxiras groups

-0.1

-0.2

-0.2

k_y

Twisted bilayer graphene provides unprecedented control of correlations in 2D electron systems

Lu et al. arXiv:1903.06513

Transferring 2D Materials

Transferring 2D Materials

Yoo et al., *Nat. Mat.* (2019)

Angle 1.20+/-0.01°. Target 1.17° T = 40 mK

Graphene twist: 1.20 +/- 0.01° Twist to one hBN: 0.81° +/- 0.02° Device 2: superconducting sample w/ misaligned hBN

Graphene twist: 1.20 +/- 0.01° Twist to one hBN: 0.81° +/- 0.02° Device 2: superconducting sample w/ misaligned hBN

Graphene twist: 1.20 +/- 0.01° Twist to one hBN: 0.81° +/- 0.02° Device 2: superconducting sample w/ misaligned hBN

Graphene twist: 1.20 +/- 0.01° Twist to one hBN: 0.81° +/- 0.02° Device 2: superconducting sample w/ misaligned hBN

Alignment with hBN

Classical Hall Effect: Calibrate Capacitance

$$\mathbf{F} = q(\mathbf{E} + \mathbf{v} \times \mathbf{B})$$

 $n = \frac{C}{eA} V_{\text{gate}}$

http://hyperphysics.phy-astr.gsu.edu/

Measuring Hall Slope Density Dependence

Anomalous Hall Signal Can Be Really Large!

Emergent Ferromagnetism at ³/₄ Filling

R_H (kΩ/T

Repeatable Fine Structure

Magnetism is Stable in Zero Applied Field

Large anomalous Hall in apparent insulating state

Evidence of domains

Reminiscent of early Magnetic TIs

Chern insulator?

Ideally:

$$\begin{array}{l} \rho_{xx}=0\\ \rho_{yx}=h/e^2\approx 26~\mathrm{k}\Omega \end{array}$$

Large anomalous Hall in apparent insulating state

Evidence of domains

Reminiscent of early Magnetic TIs

Chern insulator?

Ideally:

$$\begin{array}{l} \rho_{xx}=0\\ \rho_{yx}=h/e^2\approx 26~\mathrm{k}\Omega \end{array}$$

$$\mathcal{E}$$

$$(\text{wpind/vallers/quolasijzation}$$

$$(K;\uparrow) \quad C = 1$$

$$(K';\uparrow) \quad C = -1$$

$$(K';\downarrow) \quad C = -1$$

$$(K;\downarrow) \quad C = 1$$

$$(K';\downarrow) \quad C = 1$$

$$(K';\downarrow) \quad C = -1$$

Zhang et al. *arXiv:1901.08209* Bultinck et al. *arXiv:1901.08110*

Gap may open spontaneously: Xie et al. *arXiv:1812.04213*

3- and 4- Terminal Nonlocal Transport

Quantum Anomalous Hall in TBG

6K

0.15

0.1

Serlin et al. arXiv:1907.00261

Repeatable Hysteresis in DC Current

Toward Understanding the Nature of the Magnetism

Possible scenarios:

Spin/valley polarization — like our simple picture

Valley-polarized, spin-unpolarized composite Fermi liquid state — similar to FQHE

Non-coplanar chiral spin order at 3/4 filling of an individual band (two copies from valley)

$$E_{\text{valley-Zeeman}} = g_v \mu_B H_z \tau_z / 2$$

Orbital moment from gapped Dirac cones

Martin et al. PRL 2008

Probing nature of magnetism

Hysteresis loops in tilted filed

Hysteresis loops in tilted filed

Mostly sensitive to perpendicular component!

Behavior near in-plane field

Applying in-plane field to a magnetized state

TBG is a Chern insulator near ³/₄ filling!

Alignment to hBN appears crucial to open topologically nontrivial gap

Small DC current can flip magnetization, potentially useful for magnetic memory

Orbital ferromagnet: high degree of anisotropy

Sufficiently large in-plane field kills magnetization

10.1126/science.aaw3780

Office of

Science