Ferromagnetism near three-quarters filling in twisted bilayer graphene

Aaron Sharpe

Rencontres de Moriond March 17th, 2019

arXiv: 1901.03520

Acknowledgements

DGG Group @ Stanford

Eli Fox Arthur Barnard Joe Finney Ilan Rosen Andrew Bestwick Marc Kastner David Goldhaber-Gordon

National Institute for Materials Science

Kenji Watanabe Takashi Taniguchi

UCLA (Magnetic TIs)

Kang Wang Xufeng Kou Lei Pan

Thanks

Rupini Kamat, Hava Schwartz, Sungyeon Yang, Anthony Chen, Patrick Gallagher, Allan MacDonald, Ming Xie, Michael Zaletel, Nick Bultinck, Todadri Senthil, Steve Kivelson, Yoni Schattner, Feng Wang, Guorui Chen, Matt Yankowitz, Yuan Cao, Pablo Jarillo-Herrero

Twisted Bilayer Graphene

Engineering bandstructure

Variations in Local Twist Angle

Yoo, *arXiv:*1804.03806

Strong Correlations

Twisted bilayer graphene provides unprecedented control of correlations in 2D electron systems

Yankowitz, Science (2019)

Jarillo-Herrero and Kaxiras groups

Cao, *Nature* (2018)

Strong Correlations: Twisted bilayer near magic angle

Angle 1.20+/-0.01°. Target 1.17°

Impact of Alignment with hBN

Device 1: aligned hBN

Graphene twist: 1.20 +/- 0.01° Twist to one hBN: 0.81° +/- 0.02°

Device 2: misaligned hBN

Graphene twist: 1.05 +/- 0.01° Twist to hBN: large

Impact of Alignment with hBN

Device 2: misaligned hBN

8

Visual hBN Alignment

Alignment with hBN

Opens a gap at charge neutrality

Amet, *PRL* (2013) Hunt, *Science* (2013)

Monolayer graphene

Monolayer graphene + hBN

Measuring Hall Slope Density Dependence

Emergent Ferromagnetism at ³/₄ Filling

Repeatable Hysteresis Fine Structure in Field

Magnetism is Stable with No Applied Field

Temperature Dependence of Ferromagnetism at ³/₄ Filling

R^{AH}_{yx} (kΩ)

Anomalous Hall Signal Can Be Really Large!

Comparison: Quantum Anomalous Hall in (Cr,Bi,Sb)₂Te₃

Material & device:

6 QL Cr_{0.24}(Bi_{0.3}Sb_{0.7})_{1.76}Te₃ GaAs substrate Ti/Au contacts Top gate Ideally: $\rho_{xx} = 0$ $\rho_{yx} = h/e^2 \approx 26 k\Omega$

Near optimal gate voltage

Comparison: Anomalous Hall in TBG

Far from quantization

Nature of Emergent Ferromagnetism

Intrinsic vs. extrinsic anomalous Hall mechanisms

Nature of Emergent Ferromagnetism at ³/₄ Filling?

Simplistic band diagram: what *might* be happening...

Twisted bilayer graphene + hBN

Zhang, *arXiv:1901.08209* Bultinck, *arXiv:1901.08110*

Gap may open spontaneously: Xie, *arXiv:1812.04213*

3- and 4-Terminal Nonlocal Transport at ³/₄ Filling

Repeatable Hysteresis in Current

Another TBG Mystery

26

Questions?

TBG becomes ferromagnetic near ³/₄ filling up to 5 K!

Alignment to hBN may be crucial

At optimal doping $\rho_{xy} = 10.4 \text{ k}\Omega$ $\rho_{xy} / \rho_{xx} = 1.4$

Evidence for edge conduction

Small DC current can flip magnetization

arXiv: 1901.03520

