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We present transport measurements of bilayer graphene with a 1.38◦ interlayer twist.
As with other devices with twist angles substantially larger than the magic angle of
1.1◦, we do not observe correlated insulating states or band reorganization. However,
we do observe several highly unusual behaviors in magnetotransport. For a large range
of densities around half filling of the moiré bands, magnetoresistance is large and
quadratic. Over these same densities, the magnetoresistance minima corresponding
to gaps between Landau levels split and bend as a function of density and field. We
reproduce the same splitting and bending behavior in a simple tight-binding model
of Hofstadter’s butterfly on a triangular lattice with anisotropic hopping terms. These
features appear to be a generic class of experimental manifestations of Hofstadter’s
butterfly and may provide insight into the emergent states of twisted bilayer graphene.

Hofstadter’s butterfly | twisted bilayer graphene | anisotropy

The mesmerizing Hofstadter butterfly spectrum arises when electrons in a two-
dimensional periodic potential are immersed in an out-of-plane magnetic field. When
the magnetic flux Φ through a unit cell is a rational multiple p/q of the magnetic flux
quantum Φ0 = h/e, each Bloch band splits into q subbands (1). The carrier densities
corresponding to gaps between these subbands follow straight lines when plotted as a
function of normalized density n/ns and magnetic field (2). Here, ns is the density
of carriers required to fill the (possibly degenerate) Bloch band. These lines can be
described by the Diophantine equation (n/ns) = t(Φ/Φ0) + s for integers s and t.
In experiments, they appear as minima or zeros in longitudinal resistivity coinciding
with Hall conductivity quantized at σxy = te2/h (3, 4). Hofstadter originally studied
magnetosubbands emerging from a single Bloch band on a square lattice. In the following
decades, other authors considered different lattices (5–7), the effect of anisotropy (6,
8–10), next-nearest-neighbor hopping (11–15), interactions (16, 17), density wave states
(9), and graphene moirés (18, 19).

It took considerable ingenuity to realize clean systems with unit cells large enough
to allow conventional superconducting magnets to reach Φ/Φ0 ∼ 1. The first successful
observation of the butterfly in electrical transport measurements was in GaAs/AlGaAs
heterostructures with lithographically defined periodic potentials (20–22). These exper-
iments demonstrated the expected quantized Hall conductance in a few of the largest
magnetosubband gaps. In 2013, three groups mapped out the full butterfly spectrum in
both density and field in heterostructures based on monolayer (23, 24) and bilayer (25)
graphene. In all three cases, the authors made use of the 2% lattice mismatch between
their graphene and its encapsulating hexagonal boron nitride (hBN) dielectric. With
these layers rotationally aligned, the resulting moiré pattern was large enough in area that
gated structures studied in available high-field magnets could simultaneously approach
normalized carrier densities and magnetic flux ratios of 1. Later work on hBN-aligned
bilayer graphene showed that, likely because of electron–electron interactions, the gaps
could also follow lines described by fractional s and t (26).

In twisted bilayer graphene (TBG), a slight interlayer rotation creates a similar-scale
moiré pattern. Unlike with graphene–hBN moirés, in TBG there is a gap between
lowest and neighboring moiré subbands (27). As the twist angle approaches the magic
angle of 1.1◦ the isolated moiré bands become flat (28, 29), and strong correlations
lead to fascinating insulating (30–37), superconducting (31–33, 35–37), and magnetic
(34, 35, 38) states. The strong correlations tend to cause moiré subbands within a fourfold
degenerate manifold to move relative to each other as one tunes the density, leading to
Landau levels that project only toward higher magnitude of density from charge neutrality
and integer filling factors (37, 39). This correlated behavior obscures the single-particle
Hofstadter physics that would otherwise be present.

In this work, we present measurements from a TBG device twisted to 1.38◦. When we
apply a perpendicular magnetic field, a complicated and beautiful fan diagram emerges.
In a broad range of densities on either side of charge neutrality, the device displays
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large, quadratic magnetoresistance. Within the magnetoresistance
regions, each Landau level associated with ν =±8,±12,±16, . . .
appears to split into a pair, and these pairs follow complicated
paths in field and density, very different from those predicted by
the usual Diophantine equation. Phenomenology similar in all
qualitative respects appears in measurements on several regions
of this same device with similar twist angles and in two separate
devices, one at 1.59◦ and the other at 1.70◦ (see SI Appendix for
details).

We reproduce the unusual features of the Landau levels (LLs)
in a simple tight-binding model on a triangular lattice with
anisotropy and a small energetic splitting between two species of
fermions. At first glance, this is surprising, because that model
does not represent the symmetries of the experimental moiré
structure. We speculate that the unusual LL features we exper-
imentally observe can generically emerge from spectra of Hofs-
tadter models that include the same ingredients we added to the
triangular lattice model. With further theoretical work it may
be possible to use our measurements to gain insight into the
underlying Hamiltonian of TBG near the magic angle.

Measurements

We fabricated this TBG device using the “tear-and-stack” dry
transfer method along with standard lithographic techniques (27,
40). We encapsulated the device in hBN and included both a
graphite back gate and a Ti/Au top gate. Using both gates, we
could independently tune density n and perpendicular displace-
ment field D (41).

When stacking, we attempted to crystallographically align the
top layer of graphene to the top layer of hBN. Based on optical
micrographs taken during stacking, we appear to have succeeded
to ∼1.5± 0.5◦. This alignment may have modified the single-
particle band structure by breaking sublattice symmetry. Near the
magic angle, this can result in a quantum anomalous Hall effect,
perhaps particularly when the graphene–graphene and graphene–
hBN moiré patterns are commensurate (42). We did not see any
features in transport clearly associated with the hBN alignment, so
we do not know what role such alignment played, if any. In fact,
the alignment of facets that we observed visually may have been
between zigzag in one material and armchair in the other, in which
case the effect of the hBN on the graphene electronic structure
may be much weaker. The two other devices that displayed similar
magnetotransport, described in SI Appendix, did not appear to
have aligned hBN.

Fig. 1A shows an optical micrograph of the completed device: a
standard Hall bar with nine voltage probes on each side. The con-
duction channel is 1-μm wide and all contact pairs are separated
by three squares. In this work, we focus on measurements from
only one contact pair with twist angle 1.38◦ ± 0.01◦; however,
SI Appendix has more information on the other contact pairs. In
summary, the twist angle for most contact pairs varies between
1.29◦ and 1.45◦, with the magnetotransport effects that are the
focus of this work being peaked around 1.36◦. Curiously, two
sets of contact pairs near 1.33◦ display relatively mild unusual
magnetotransport behaviors, but also display superconductivity
(see SI Appendix for details). This is far outside the range of
twists around the magic angle where superconductivity has been
previously reported for twisted bilayer graphene.

Upon tuning the top gate at fixed magnetic field, we do not
observe correlated insulating states at partial fillings of the flat
bands (Fig. 1B). This behavior is consistent with reports of samples
similarly far above the magic angle (33). Nor do we observe
the opening of a gap at charge neutrality or any signatures of

A C

B

Fig. 1. Low-field magnetotransport. (A) Optical micrograph of the device
showing contacts and top gate in gold and hBN in green. We use the large top
and bottom contacts to source and drain current. The channel width is 1 μm,
and all longitudinal contact pairs are separated by three squares. The white
line indicates the contact pair that we study throughout this work. (Scale bar:
5 μm.) (B) Longitudinal resistivity of the device as density is tuned through
empty to full moiré cell at several fixed magnetic fields (in Tesla). The peak
at n = 0 is charge neutrality, and the peaks at the edges of the plot are full
filling/emptying of the moiré unit cell. At nonzero fields, there are regions
on either side of charge neutrality with large, positive magnetoresistance. (C)
Magnetoresistance ratio as a function of field for several fixed densities on a
log-log plot. Each trace is offset vertically for clarity. The black dashed line is a
quadratic.

ferromagnetism, behaviors that are associated with aligned hBN
near the magic angle (34, 35, 38). Instead, in a broad range of
densities near half filling, we observe large positive magnetoresis-
tance for both electron and hole doping. The magnetoresistance
ratio [ρ(B)− ρ(0)]/ρ(0) is approximately quadratic at low field,
reaches over 300, and appears to saturate above 5 T (Fig. 1C ).

As we tune both field and density, a complicated series of quan-
tum oscillations originates at the charge neutrality point and B =
0 and propagates outward (Fig. 2A). Near charge neutrality, the
Landau levels look similar to those of ordinary magic-angle TBG
devices (31, 33, 36), with filling fractions ν =±4,±8,±12, . . .
being the most prominent. To within experimental precision,
these have zero longitudinal resistance and quantized Hall re-
sistance. As we tune the density into the regions with large
magnetoresistance, the Landau levels ν =±6,±10, . . . disappear.
Each fourfold degenerate Landau level appears to split into a pair
with slopes roughly corresponding to ν =±8± 0.5,±12± 0.5,
and so on (our field range does not allow tracking the ν =±4
levels into the magnetoresistance regions). These split levels do not
have zero longitudinal resistance, reaching a minimum of a few
hundred ohms. Nor do they follow exactly straight lines. Instead,
they bend when approaching other levels. For lack of a better term,
we continue to refer to them as Landau levels.

Landau levels also propagate inward from full filling/emptying
of the isolated moiré bands toward lower electron/hole filling,
respectively, and these behave similarly to those originating
from charge neutrality. We can determine Φ/Φ0 by considering
the points where these levels cross those originating at charge
neutrality. For instance, the level with ν =+8 originating at
n/ns =−4 must intersect the level with ν =−12 originating at
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A

B

Fig. 2. Unusual Landau fan diagram. (A) Landau fan diagram taken at 26 mK. Landau-level gaps are observed as minima in longitudinal resistivity. (B) Schematic
fan diagram corresponding to A. Red shaded regions are regions with large magnetoresistance at low field. Solid (dotted) lines are symmetry-preserving (-broken)
LLs coming from either charge neutrality or a band edge. Dashed lines are resistance minima corresponding to nonzero s and t. The light gray dashed boxes
indicate regions reproduced in Fig. 3.

charge neutrality at Φ/Φ0 = 1/5. In the following Discussion, we
refer to fields by their values of Φ/Φ0.

The phenomenology near the intersection of split Landau
levels traveling in opposite directions follows a consistent pattern
throughout the fan diagram. The example of the +8 and −12
levels from the previous paragraph is shown in Fig. 3A. As
mentioned above, each Landau level splits into a lower and an
upper level. When a lower (upper) level overlaps with a lower
(upper) level moving in the other direction, it changes direction to
follow a line originating from half filling (s =±2, steeply sloped
dashed lines in Fig. 3) with slope equal to the average of the two
intersecting levels, which is−2 in this case. Within the overlap, the
resistivity minima tend to be deeper. Two crossings of a lower with
an upper level occur at the same field that the nonsplit Landau
levels would have intersected (horizontal dashed lines in Fig. 3),
which is 1/5 for this example. There is no drop in resistivity where
these two intersect. Instead, they appear to displace horizontally by
the width of the level that they are crossing before resuming their
previous slope. The result of these changes in direction is that in
between the overlaps the split LLs are shifted slightly toward each
other.

The overlap of the split LLs around +8 and −8 originating
from n/ns =−4 and charge neutrality, respectively, shows the
same phenomena (Fig. 3B). In this case, the intersection is at
Φ/Φ0 = 1/4, and the average slope is 0, so we see a vertical
line of low resistivity. In addition, there are faint additional levels
emanating outward from the two intersections of lower with upper
levels.

Discussion

Surprisingly, we find that we can reproduce the basic phenomenol-
ogy observed in the Landau fan diagram with a single-particle
calculation that is a simple extension of Hofstadter’s butterfly.

Rather than attempting to augment the standard continuum
model of twisted bilayer graphene (18, 43), we make our calcu-
lation in a simple triangular lattice. We do not expect that the
exact details of our calculation match the details in our TBG
device, including but not limited to the degeneracies arising
from spin and valley. Instead, the replication of several distinctive
behaviors in such a simple model suggests that they are generic
features of Hofstadter-like models. We have verified that the same
phenomena arise on a square lattice as well as a honeycomb lattice
with modifications equivalent to those described below.

Hofstadter’s butterfly is the result of applying a magnetic field
to the tight-binding Hamiltonian

H =
∑
〈i,j 〉

aij c
†
i cj + h.c. [1]

via Peierls substitution, where i , j ∈ Z index lattice sites. Each
unit cell contains three bonds with associated hopping amplitudes
a1, a2, and a3. Following many prior works, we numerically solve
the associated eigenvalue equation to find the energy spectrum.
We then make the simple step of displaying dμ/dn , the inverse
density of states as a function of density. As we show below, if we
slightly modify Hofstadter’s tight-binding Hamiltonian, dμ/dn
emulates the striking phenomenology of our device’s magnetore-
sistance.

Specifically, we augment the Hamiltonian by allowing the
hopping amplitudes to be different along the three symmetric
directions (a1, a2, and a3 not all equal) and adding a second
fermion species with a tunable energy splitting V, yielding

H =
∑

α∈{A,B}

∑
〈i,j 〉

aij c
†
iαcjα

+ V
∑
i

(
c†iAciA − c†iBciB

)
+ h.c. [2]
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A B

C D

Fig. 3. Split Landau-level overlap behavior in experiment and computation.
(A and B) Detail of the crossing of split LLs −12 from charge neutrality (s, t = 0,
−12) and +8 from n/ns = −4 (s, t = −4, 8) (A) and −8 from charge neutrality
and +8 from n/ns = −4 (B). The horizontal lines are at the indicated Φ/Φ0,
and the lines with steep slopes are the average (s, t) of the crossing LLs. For
the case of A, this is the average of (0, −12) and (−4, 8), which is (−2, −2) as
indicated. (C and D) Computed inverse density of states for q = 2,999, a1 = 3,
a2 = a3 = 1, and V = 0.3 near the crossing of the split levels s, t = 2, −6, and 0,
4 (C) and s, t = 0, 4, and 2, −4 (D). Note that if we were to add in an additional
factor of 2 to s and t, to account for an additional degeneracy, then the values
of s and t in C and D would match those in A and B after shifting the zero point
of the density. The color scale for C and D is as in Fig. 4. Stars in B indicate
the ends of the faint “extra” LLs originating from the intersections of lower
(upper) with upper (lower) split LLs. These features are clearly reproduced in
computation in D.

In the following text and Figs. 3 and 4, we set a2 = a3 = 1 and
consider only constant V. If V is instead set proportional to B,
to reflect Zeeman splitting of either spins or valleys, the phe-
nomenology is not substantially changed. The specific values of a1
and V that we show are not motivated by any microscopic details
of the system, but were instead chosen for their phenomenological
match to the data. Fig. 4 shows spectra and the corresponding
inverse density of states from the model of Eq. 2 for several values
of a1 and V.

The spectrum for a1 = a2 = a3 = 1 is identical to the classic
isotropic butterfly, and the corresponding inverse density of states
demonstrates clear Diophantine behavior (Fig. 4E). However, as
there are two fermion species, each state is doubly degenerate and
the gaps follow even-integer slopes only.

Anisotropy has previously been shown to smear out the energy
levels and partially close the gaps in the spectrum (6, 8–10), which
we reproduce by tuning a1 away from a2 and a3 (Fig. 4 B and F ).
Upon then introducing a small amount of V, a second butterfly
pattern appears (Fig. 4C ). At low fields and low densities the
two butterflies are almost parallel and seldom overlap, and every
integer filling of Landau levels gives a ground state with a gap for
excitations. However, at higher fields and energies, the anisotropy-
broadened butterflies overlap, and odd-integer Landau-level fill-
ings have no gap to excitations. The even-integer Landau levels
appear to split and bend in the same way as the measured Landau
levels in our device, and the behavior at crossings of opposite-
polarity Landau levels is also the same as in our device, as shown in
Fig. 3 C and D. The shape of the split LLs is in rough agreement
with our experiment for the range of parameters 1.5< a1 < 4
and 0.1< V < 0.4. SI Appendix shows the behavior of the model
outside of this parameter range and more fully explains the cause
of the offsets in split LLs as they intersect.

While we cannot rule out the possibility of an alternative
explanation, the fact that such complex behavior can be repro-
duced with a simple single-particle model is very encouraging.
Even if a modified Hofstadter model is the correct description
of the unusual magnetotransport in TBG, our particular choice
of modifications is not the only one that could account for the
data. For example, we found that a Hofstadter butterfly model
with unit cell doubling plus anisotropy gives the same splitting,
bending, and overlapping behavior. Further experiments will be
needed to determine which modifications to a Hofstadter model
are actually relevant to our TBG devices. With those caveats in
mind, several features call for further examination:

First, what causes the striking magnetoresistance? We see very
large magnetoresistance in the density-field region of our ex-
perimental fan diagram corresponding to where the two broad-
ened butterflies overlap in our model, as indicated in Fig. 4.
Although the phenomenological association is clear, it is not
obvious to us why overlapping Landau levels should produce such
prominent magnetoresistance. One might instead imagine that
the magnetoresistance results from coexistence of charge carriers
of both signs, since compensated semimetals show some of the
strongest known near-quadratic magnetoresistance (44–46). This
phenomenologically tempting explanation does not simply accord
with the persistence of magnetoresistance over a broad gate voltage
range (for a fuller discussion, see SI Appendix). Perhaps such
coexistence could be related to proximity to van Hove singularities
in the density of states (47, 48) (also see SI Appendix, Fig. S6 and
associated discussion).

Second, is the smearing out of the energy spectrum caused
by anisotropy, as we suspect? If so, what is the origin of the
anisotropy? Some previous theoretical (49–54) and experimental
(55–58) results suggest nematic order at a variety of filling factors
within the lowest-energy moiré miniband manifold, both in TBG
relatively close to the magic angle of 1.1◦ and in twisted double-
bilayer graphene. One would expect that nematic order would
accompany an anisotropic effective Hamiltonian. We do not
believe that this explanation is relevant, simply because we see
the unusual magnetotransport at large enough angles such that
the electron interactions are too weak for nematic order to exist.
Instead, we believe that uniaxial strain, either in one layer or in
both, is a more likely explanation.

Landau fan diagrams have been a staple of electrical transport
measurements for decades, because they give clear insight into the
spectrum of electronic states and their filling. In this work, we have
identified an entirely different confluence of phenomena in the fan
diagram of a TBG device and have found, to our surprise, that
this same combination emerges naturally from a single-particle
Hamiltonian with anisotropic tunneling.

Materials and Methods

Device Fabrication. We assembled our device using a tear-and-stack method.
We first prepared a Poly(Bisphenol A carbonate) film stretched over a gel (Gel-
Pak DGL-17-X8) and affixed it to a glass slide with double-sided tape. To start
stacking, we picked up the top layer of hBN at 80 ◦C. We then used the edge of
the hBN flake to pick up and tear the graphene at room temperature. The lower
temperature compared to the other steps helps to prevent a common cause of
stacking failure for us: graphene outside the region directly contacted by the hBN
being picked up or dragged. In this step, we attempted to optically align a long,
straight edge of the hBN to a similar edge of the graphene. We then rotated the
remaining portion of the graphene flake by 1.2◦, picked it up at 80 ◦C, picked up
the bottom hBN at 80 ◦C, and then finally picked up a flake of few-layer graphite
at 80 ◦C to form the back gate. We transferred the final stack at 150 ◦C onto
300-nm-thick SiO2 on degenerately doped Si with prepatterned alignment
marks.
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A B C D

E F G H

Fig. 4. Replication of unusual magnetotransport features in Hofstadter’s butterfly. (A–D) Energy spectra for the indicated parameters for q = 1,999, discussed
in the main text. (E–H) Inverse density of states corresponding to spectra in A–D. For these plots, as well as their counterparts in Fig. 3, the density runs up to
n/ns = 2 to account for the two fermion species. The dashed red line in H bounds one of the high density-of-states regions where the two butterflies overlap,
which corresponds to where we see large magnetoresistance in transport.

We then used several iterations of standard e-beam lithography to define the
Hall bar. We deposited a Ti/Au top gate, etched the Hall bar region using CHF3/O2

(50/5 sccm), and then deposited Cr/Au edge contacts.

Transport Measurements. All measurements in the main text were taken in
a dilution refrigerator with a base temperature of 26 mK at the mixing chamber.
The measurement lines include low-pass RF and discrete RC filters at the mixing
chamber stage. We used a Stanford Research SR830 lock-in amplifier with a 1-GΩ
bias resistor to source an alternating current of 1 nA at roughly 1 Hz. We measured
differential voltage pairs with NF Corporation LI-75A voltage preamplifiers and
SR830 lock-in amplifiers. We applied gate voltages using Yokogawa 7651 DC
voltage sources. We held the Si back gate at a constant 30 V for all measurements
to promote transparent contacts.

Hofstadter’s Butterfly Calculation. We calculated the butterfly spectra using
standard numerical methods. Details can be found in SI Appendix.

Data Availability. The data for this study along with all code used to generate
spectra and figures have been deposited in the Stanford Digital Repository
(https://doi.org/10.25740/tm725vs8229) (59).
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