
Supplementary Information to “Bachmann et al., Super-geometric electron focusing 
on the hexagonal Fermi surface of PdCoO2“ 

Supplementary Note 1. Synthesis and characterization of PdCoO2 crystals 

Single crystals were grown in an evacuated quartz ampule with a mixture of PdCl2 and CoO by 
the following methathetical reaction35: PdCl2 + 2CoO ® 2PdCoO2 + CoCl2. The ampule was 
heated at 1000 °C for 12 hours and stayed at 700-750 °C for 5 days. In order to remove CoCl2, 
the resultant product was washed with distilled water and ethanol. 

The orientation of the crystallographic axes was determined using the back-reflection Laue 
method. It was consistently found in over 5 crystals, that the in-plane a- and b-axes are rotated 
90 degrees with respect to the hexagonal growth edges (see Fig. 2a). The out-of-plane c-axis 
lies perpendicular to the crystal platelets. 

Quantitative energy dispersive X-ray spectroscopy (EDS), displayed in figure S1a, was used to 
confirm the elemental composition of the delafossite crystals using the AZtec software platform 
from Oxford Instruments. Typically, the oxygen concentration is severely underestimated due to 
a wrong carbon coating thickness, since carbon has an absorption edge near oxygen and heavily 
absorbs oxygen x-rays. Therefore, if the oxygen is fixed by stoichiometry to 2 ions, Pd and Co 
are found in equal atomic concentration. 

Additionally, we present the Shubnikov-de Haas oscillations measured in a FIB-defined PdCoO2 
transport bar, with current flowing along the crystallographic a-axis in an out-of-plane magnetic 
field (B||c) at 2K. The clear observation of quantum oscillations demonstrates that the high 
crystalline quality of the crystals after FIB sample fabrication. The observed frequencies F1 = 28.9 
kT and F2 = 30.2kT, and masses m1 = 1.65me and m2 = 1.73me ± 0.02 agree well with the reported 
values14 for bulk samples. 

The residual resistance ratios extracted from the data in Fig. 2d are 457, 459 and 355 for VB, VC 
and VD respectively. Although the size of the overall device exceeds the mean free path, ballistic 
effects at low temperatures may lead to a correction of the measured non-local voltage. 

 

Supplementary Figure 1: Characterization of FIB microstructured PdCoO2 crystals. 
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a) SEM-EDS spectrum of a PdCoO2 crystal. Insert: Elemental analysis report after fixing the 
oxygen content by stoichiometry to 2. 

b) Fast Fourier transform (FFT) of the Shubnikov-de Haas (SdH) oscillations after a smooth back 
ground subtraction (inset). The main frequencies F1, F2, as well as their difference frequency F2-
F1 agree well with reported values in literature14. 

 

Supplementary Note 2. FIB fabrication of point-like injections nozzles 

During this investigation, a total of 7 PdCoO2 crystal platelets were structured into TEF devices. 
These included 5 nozzle sets oriented along the 2-beam direction, 2 nozzle sets oriented along 
the 3-beam direction and 3 nozzle sets oriented 11 degrees away from the 2-beam and 3-beam 
direction respectively. The measurement results of these devices reproduce the data shown in 
figure 3. The following image series displays the device fabrication process used for a single 
crystal into which one set of nozzles oriented along the 2-beam direction was cut. The fabrication 
approach described here can be used to fabricate nozzle along any desired in-plane direction of 
the crystal. 



 

Supplementary Figure 2: Step-by-step overview of the fabrication of a ballistic delafossite device 
using a Ga-based FIB. 
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a) A PdCoO2 crystal is fixed onto a sapphire substrate (1.6 x 1.6 x 0.4  mm3) with 5 min araldite® 
rapid epoxy, which is cured for 1 hour at 100 °C on a hot plate. Care is taken to select a crystal 
with as little step edges as possible and with well-defined hexagonal growth edges, such that 
the crystallographic orientation can be directly determined. 

b) The crystal is thinned down in the center to a final thickness of less than 1 µm (here 700 nm), 
using Ga2+ ions at 30 kV, cutting a rectangle pattern with a current of 65 nA, 1 µs dwell time and 
the “dynamic all directions” scan option. Thinning down the crystal is a necessary step to 
fabricate narrow, closely spaced nozzles later on. Further ~10 µm wide rectangular cuts are made 
using 65 nA through the remaining thick parts of the crystal to define current and voltage 
contacts. A small gap is left to reduce re-deposition in the central area. 

c) Rectangular cuts are patterned with 2.5 – 9.3 nA in the central region, which define a 
rectangular measurement region. The sides of the rectangle are polished with 2.5 nA under an 
angle of +1 degree with respect to the normal milling direction to obtain flat boundaries. 

d) In order to ensure a homogenous current flow between all palladium layers despite having a 
top current injection, holes are patterned through the entire depth of the crystal with a current 
of 47nA and 2ms dwell time. At the inner edge of these ‘root’-like features, the amorphous FIB-
damage layer and re-deposition couples the individual layers together and increases the 
interlayer conductance. Roots are also milled into the central part of the device using a current 
of 2.5 nA and 2 ms dwell time. 

e) The constrictions leading up to the nozzles are patterned with 80 pA. Making long and thin 
constrictions is favorable, as they act as long flexures and reduce mechanical cracking of then 
nozzles due to strain from differential thermal contraction while cooling down. 

f) The nozzles are cut using an array of cleaning cross section (CCS) cuts at 40 pA, cut under an 
angle of 1degree. Initially the nozzles to a width of about 500nm and are then sequentially 
thinned down with CCSs until the final width of the nozzle is achieved. 

g) Overview of the final device. If the nozzles are thinner than 350 nm, a second layer of 5 min 
araldite epoxy is added on top of the finished device and cured at room temperature for 24 
hours. This reduces the substrate strain during cooldown and avoids nozzle fracture. 

h) Final device on sapphire substrate. Silver wires were attached using Epotek EE129-4 silver 
epoxy and cured at 100 °C for 1 hour. A 100 nm thick layer of sputtered Au connects the pre-
evaporated gold leads on the substrate with the crystal device. 

  



Supplementary Note 3. Current dependence 

As a result of the extremely high in-plane conductivity of PdCoO2 at low temperatures, 
comparatively large measurement currents are necessary in order to record clean signatures of 
the TEF effect. The typical measurement current used for the devices presented here is on the 
order of 1mA. In order to exclude the occurrence of self-heating effects, we have performed the 
same TEF measurement for a range of current spanning nearly two orders of magnitude (25µA, 
100µA, 1mA, 2mA), thus varying the input power P nearly four orders of magnitude. As presented 
in figure S3a, the resulting position, height and width of the TEF peaks do not undergo any 
measurable change. We therefor conclude that the system is in the linear response regime. 

 

Supplementary Figure 3: Current dependence of the TEF signal. 

a) Four currents (25µA, 100µA, 1mA, 2mA) spanning nearly two orders of magnitude were 
applied to the device shown in panel b. No significant change between the individual TEF signal 
is observable. 

b) A current was sources from the left most nozzle to the top left electrode, while the voltage 
was measured between a nozzle separated by 5µm from the injection nozzle and the top right 
electrode. The widths of the nozzles is around 280nm. 
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Supplementary Note 4. Reproducibility 

In the following we compare the measured TEF signal for 3 distinct devices fabricated from 3 
different crystals. In order to compare the measured signals, we divide the voltage by the applied 
current as well as the device thickness, summarized in the table below. The observed differences 
in peak height and position (see fig. S4a) can partially be accounted for taking the varying nozzle 
widths into consideration. Additionally, the shape of the nozzle influences the degree of 
collimation the ejected electron beam and can therefore change the height of the focusing peak. 
We conclude that the key signatures of the TEF signals are highly reproducible, while details may 
depend on the specific device geometry implemented. 
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Supplementary Figure 4: Comparison of the TEF signal measured in 3 different devices. 

a) The devices corresponding to the data presented here are displayed in figure 2 (blue), S2 (red) 
and S3 (cyan) respectively. The peaks of the TEF signals, indicated by dashed lines, are located 
at 3.22T, 4.25T, 6.28T and 11.86T, for nozzle separations of 4, 3, 2, and 1µm. 

b) Close up comparison of the various nozzle shapes and widths for the three devices. The various 
nozzle widths and thicknesses are summarized in the following table. 

Device in presented in figure thickness nozzle width 

2 1.2µm 290 - 340 nm 

S2 0.69µm 200 - 260nm 

S3 1.23µm 280 – 290 nm 

Supplementary Table 1: Overview of the device dimensions of the samples presented in figure 
S4. 

  



Supplementary Note 5. Long range Focusing 

Here we present the TEF signal of the furthest spaced nozzle pair which we have fabricated. The 
distance between these nozzles (1 and 8 from figure 2) is 35µm, which amounts to a path length 
of approximately 53µm through the sample (sketched in blue in panel a). As a comparison, we 
also show the TEF signal of a nozzle pair which is separated by a distance of 15µm. The 
measurements performed at 2K are presented in panel b, in which up to 8 TEF peaks are clearly 
identifiably. This demonstrates the length scale over which ballistic effects are still observable. 

 

Supplementary Figure 5: TEF across distances greater than the mean-free-path. 

a) Measurement setup and propagation path through the sample. Along the 2-beam direction a 

nozzle separation of L1 = 15 µm and L2 = 35 µm corresponds to a path length (𝑠 = 	 $
%
𝐿 in a perfect 

hexagon) through the device of s1 ≈ 23 µm and s2 ≈ 53 µm respectively. 

b) Measured voltage ∆V divided by the applied current I = 6 mA as a function of transverse 
magnetic field at a temperature of 1.8 K. Top: Direct comparison of the signals of a 15µm and 
35 µm separated nozzle pair. Bottom: Magnified signal of the 35 µm spaced nozzle pair. The 
double peak feature as well as 7 higher harmonic peaks are detectable.  
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Supplementary Note 6. Peak shape analysis from ballistic simulations 

 

Supplementary Figure 6: Comparison of the peak shapes for a circular, perfect and a realistic 
model of the rounded hexagonal Fermi surface 

a) Comparison of the focusing spectra and peak heights of TEF in a circular FS and measured 

along the 3-beam and 2-beam direction in PdCoO2. The cyclotron diameter is a factor √$
%
	smaller 

in the 3-beam direction compared to the 2-beam direction, corresponding to the difference 
between inradius and circumradius of a hexagon. The diameter of the circular FS is expressed 
relative to the circumradius of the hexagon and was chosen smaller for clarity. Compared to a 
circular FS the 3-beam direction has an enhanced peak, while the main peak along the 2-beam 
direction is reduced and has a second broad hump. 

b) In a circular FS the simulated focusing spectrum (shaded purple) diverges. For the 
mathematical derivation c.f. methods S10. 

c) Comparison of the TEF spectra of a perfect hexagon and a hexagon with warped sides and 
rounded corners inferred from the FS of PdCoO2 along the 3-beam direction. The perfectly flat 
edges lead to a geometrical enhancement of height of the focusing peak (so called super-
geometric focusing or ‘sfocusing’). In a warped hexagon, sfocusing still leads to an increased TEF 
peak. 
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d) Along the 2-beam direction, a perfect hexagonal FS does not exhibit any TEF at all, because 
there are no FS regions that are parallel to the nozzle injection direction. For a hexagon with 
rounded corners a focusing peak is recovered, analogous to the case of a circular FS. 

Supplementary Note 7. Amplitude ratio analysis 

The amplitude ratio of subsequent TEF peaks, q = An/An+1, is often believed to be a direct probe 
of the specularity of the boundaries. In this simple picture, the decay of the peak height is 
equated to the boundary specularity coefficient p. This, however, neglects corrections due to 
Fermi surface shape. To identify the relation between q and p, we have therefore performed 
ballistic simulations for a hexagonal FS (3-beam and 2-beam direction) as well as a circular FS.  
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Supplementary Figure 7: Simulations and analysis of TEF peaks for various boundary specularity 
coefficients. 

a) Simulated TEF spectrum along the 3-beam direction for a total of 100’000 particles with an 
isotropic incident angle distribution. The specularity of the boundary is p = 0.9, meaning that 
90% of the electrons are specularly reflected upon impact with the boundary and the remaining 
10% are assigned a random angle. During the simulation, all points of impact with the boundary 
for all particles are saved and displayed in the histogram above. For further analysis, the number 
of impacts in the orange shaded regions, corresponding to the TEF peak areas, is extracted. 

b) The counts in the orange shaded area in panel a as a function of TEF peak number are plotted 
in color for a wide range of simulated specularity coefficients p between 0 and 0.9. The black 
line is a fit of the form 𝐴𝑞* + 𝑐 to the data, where A scales the overall amplitude, q is the extracted 
“experimental specularity coefficient” and c is a background offset. 

c) The extracted experimental amplitude ratio q as a function of the specularity coefficient p for 
the 3-beam (orange) and 2-beam (blue) direction as well as a circular FS (purple). The black line 
indicates where q=p. 

The main result of these simulations is that the assumption of q = p, identifying the true surface 
specularity p with the measured power law coefficient q is not strictly applicable, even for a 

circular Fermi surface. Hence the amplitude ratio -./0
-.

	is an indicator, but not a perfect measure 

of the specularity of the boundary. The physical reason for this is two-fold. In the case of fully 
specular reflection the peak width grows with the number of peaks and due to their convolution 
with a finite nozzle size the measured voltage decreases with increasing peak number. In the 
opposite limit, even in the case of completely diffusive boundary scattering (p=0), a large number 
of TEF peaks are expected to arise from focusing. Therefore, a simple analysis will extract a 
significant q value for p=0. Indeed, we find q≈0.33 for fully diffuse scattering (figure S7c). This 
value has a simple physical interpretation. Due the 3 main directions of propagation, 
approximately 1/3 of the electrons will be scattered into the direction that will be focused again. 
This statistical mechanism will lead to an apparent specularity of the boundary despite a 
completely diffusive scattering process. This is an alternative formulation of the super-geometric 
focusing properties of PdCoO2.  

  



Supplementary Note 8. Peak position analysis 

In the following we analyze the ratio between the fields B1 at which the first TEF maxima along 
the 2-beam and 3-beam direction occur, both for the experimentally measured and simulated 
spectra displayed in figure 3. For a mathematically hexagonal Fermi surface, no focusing is 
expected in the 2-beam-direction as discussed in the main text. Instead, here the ratio of the 
longest possible trajectories gives a measure of the range of electron transmission (Fig. S8). In 
the case of the ideal hexagon, the ratio of travel distances is geometrically given by the ratio of 

the inner to outer diameter of a hexagon, √$
%
	≈ 0.87. This simple argument is already quite close 

to the experimental results. When the rounded corners of the realistic Fermi surface of PdCoO2 
are taken into account, a macroscopic density of states will be focused at the same field, and a 
focusing peak occurs even in the 2-beam direction. The ratio of the furthest travelled distance in 
both directions increases to 0.91 for the realistic Fermi surface parameters obtained by ARPES 
and quantum oscillations. This happens as the distortions increase 𝑟$789:; and decrease 𝑟%789:;. 
In a circular Fermi surface, this ratio is naturally one and all TEF is independent of the crystal 
orientation. Note that a ratio closer to one, however, does not indicate a deformation to a more 
circular orbit, but merely reflects the geometric properties of the slightly star-shaped Fermi 
surface. This is exemplified in Fig. S8, as the realistic Fermi surface is distorted distinctly into a 
star-shape and not a more circular object. Yet the ratio increases. This back-of-the-envelope 
estimate already quite accurately reflects the ratio of the measured focusing fields.  

 

Supplementary Figure 8: Sketches of real space orbits indicating the maximal travel distance 
between nozzles, both for (a) the ideal hexagon and (b) the realistic Fermi surface.  

To further improve the modelling, we take both the realistic Fermi surface and the finite nozzle 
width into account in the Monte-Carlo simulations. Here we obtain a ratio of 0.96 for the 2µm 
nozzle, in good quantitative agreement with the measured ratio of 0.99. The main reason for the 
increase of the ratio is that finite nozzles allow focusing trajectories over a small range of cyclotron 
radii, a geometric property that a full kinematic simulation naturally takes into account. The main 
factors attributing to the subtle deviation between experiment and tuning-parameter-free 
simulations (~3%) are measurement errors in the exact nozzle geometries in the SEM images; 



nozzle-to-nozzle deviations of their width during fabrication; and the emission characteristic of 
the nozzles. The latter were assumed to be isotropic in k-space while in reality the ballistic 
connections to the nozzles themselves may lead to deviations in the emission spectrum. 

 

 Simulation Experiment 

Nozzle 
separation 

2-beam 
direction 

3-beam 
direction 

ratio 
 

2-beam 
direction 

3-beam 
direction 

ratio 
 

2µm 6.19 T 5.96 T 0.96 6.04 T 6.00 T 0.99 

4µm 3.23 T 2.98 T 0.92 3.18 T 3.07 T 0.965 

 
Supplementary Table 2: Comparison of the ratio of the magnetic fields at which the first TEF 
maximum occurs for both the simulated and experimentally measured TEF spectra. 

 

Supplementary Note 9. Extraction of the mean-free-path λ 

 

Supplementary Figure 9: Geometrical model of TEF on a circular FS. 

The further two nozzles are spaced apart along the edge of the sample, the longer the path 
length s of an electron traveling through the bulk of the device, which increases the chances of 
being scattered away from its ballistic orbit. As pointed out by Tsoi et al.34, the amplitude A1 of 
the first TEF peak is proportional to 𝑒7= >⁄ . The amplitude, however, also depends upon the ratio 
of 𝑏/𝐿, where b is the width of the accepting nozzle and L is the distance between the nozzles. 
Assuming a point-like injection source and only the accepting nozzle having a width b, we find 
𝑥 + 𝑏 = 𝐿, where L is the maximum distance an electron can travel at a fixed field (𝐿 = 2𝑟D). In a 
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system with a circular FS, the travel distance x of an electron injected under an angle θ can be 

found by trigonometry to be 𝑥 = 2𝑟D cos 𝜃, where 𝑟D =
ℏKL
9M

 denotes the cyclotron radius and 𝑘O is 

the Fermi momentum. With that and by Taylor expanding cos 𝜃 ≈ 1 − RS

%
 for small 𝜃, we find Δ𝜃 =

	2𝜃 ≈ 2U%8
V

. Accordingly, the amplitude of the first peak will decrease with increasing nozzle 

distance as 𝐴W = 	2U%8
V
𝑒7= >⁄ , where the path length is given by 𝑠 = 	π𝑟D. 

In the case of a hexagonal Fermi surface, the amplitude is similarly dependent on 𝑒7= >⁄  as well 
as the ratio 𝑏/𝐿. For fitting the peak decay and extracting the mean-free-path λ in Fig. 3c we use 

the form 𝐴W(L) = A		𝑒7= >⁄ U8
V
+ 𝑡, with 𝑏 = 0.3µ𝑚 and 𝑠%89:; = $

%
𝐿, 𝑠$89:; = √3𝐿 are the path 

lengths for the 2-beam and 3-beam directions respectively. In addition to λ, the free variables 
are A, which sets the overall amplitude, and t, which takes the geometrical deviations from a 
non-circular FS into account. In the 3-beam direction the path-length is ill-defined due to the 
very nature of the super-geometric focusing effect. We choose the average between the longest 
and shortest path possible. The fit results are summarized in table 1. We note that this analysis 

is only valid for 8
V
≪ 1; once the nozzle width becomes comparable to the nozzle spacing the 

description breaks down. Further, particularly noticeable in the regime where 𝑏~𝐿, but true in 
general, is that the maximum of the focusing peak does not occur at strictly 𝐿 = 	2𝑟D	but at lower 
magnetic fields when a nozzle of finite width can collect the maximum number of electrons. 

 

 A [mΩ] t [-] 𝜆 [µm] 

2-beam direction 7.7 -0.0037 14 

3-beam direction 11.24 0.06 15.7 

 
Supplementary Table 3: Free parameters for fitting the peak decay of A1 as a function of nozzle 

distance (c.f. Fig. 3c) with the form AW(L) = A		e7d e⁄ Uf
g
+ t. The small value of t in the 2-beam 

direction reflects the fact that the focusing in this orientation originates from the rounded corners 
of the hexagon which can be locally approximated by a circle. In the super-geometric focusing 
configuration the flat sides of the hexagon no longer resemble a circle leading to a larger t value. 

  



Supplementary Note 10. Derivation of the TEF spectrum of a circular FS 

In classical probability theory, let X and 𝛩 be continuous variables, where 𝛸 = 𝑔(𝛩). The 
probability density function 𝑓m(𝜃) describes the probability of 𝛩 falling within the infinitesimal 

interval [𝜃, 𝜃+d𝜃]. This can be transformed according to 𝑓n(𝑥) = 	𝑓m(𝑔7W(𝑥)) ∙ p
q
q*
𝑔7W(𝑥)p, which 

describes the probability of X falling into the interval [x,	x+dx], in terms of the density if θ. 

Let us consider the case of an (i) uncollimated and (ii) collimated beams of electrons injected into 
a TEF device. In all cases 𝑥 = 𝑔(𝛩) = 2𝑟D cos 𝜃 is the travelling distance of electrons when injected 
at x=0. 

(i) For an uncollimated beam 𝜃 has a uniform density on [−t
%
, t
%
] 

 𝑓m(𝜃) = v
W
t
			𝑓𝑜𝑟	𝜃	 ∈ 	 y− t

%
, t
%
z ,

0															𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
 

 
Requiring the probability density to be normalized,∫ 𝑓n(𝑥)𝑑𝑥 = 1�

7�  , we find: 

𝑓n(𝑥) = 	
%
t

W

U���S7*S
 , corresponding to the curve shown in figure S4b. 

 
(ii) Similarly, for a beam which is collimated in a cosine form, we find its density 

𝑓m(𝜃) = v
W
%
cos 𝜃 			𝑓𝑜𝑟	𝜃	 ∈ 	 y− t

%
, t
%
z ,

0															𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
  

 
The probability density function is then given by 

𝑓n(𝑥) = 	
*
%��

W

U���S7*S
 . 

  



Supplementary Note 11. Numerical Methods  

We start with a tight binding approximation of the FS14 based on ARPES data32, 

𝒌𝑭(𝜃) = 𝑘� + 𝑘� cos(6𝜃) + 𝑘W% cos(12𝜃) 

where k� = 0.95Ȧ7W, k� = 0.05	Ȧ7W, and 𝑘� = 0.006	Ȧ7W. The equations of motion for an electron 
in an out-of-plane magnetic field 𝑩 = 𝐵𝒛� are 

ℏ𝑣 =
∂ε
∂𝑘
, ℏ�̇� = −𝑒𝑬 + 𝑒𝐵�̂� × 𝒗 

where ℏ is the reduced Planck’s constant, 𝑒 is the charge of an electron, 𝒗 is the Fermi velocity, 
and 𝐸 is the electric field experienced by the electron. In the ballistic regime, there is negligible 
electric field in the bulk, therefore we assume that 𝐸 = 0. As discussed in the main text, the real 
space trajectory is a 90∘ rotation of the FS scaled by a factor of ℏ/𝑒𝐵. Because we are not 
concerned with transit times of the electrons, we can ignore the Fermi velocity 𝑣.  

When interacting with an edge of the device, the probability of injecting into a particular state 𝑛 
of the discretized Fermi surface is  

𝑝(𝑛) = 𝑐𝑜𝑠(θ(𝑛) − 𝜙) 

where θ(𝑛) = 𝑡𝑎𝑛�𝑣 /𝑣*¡ is the direction of propagation of the state 𝑛 and ϕ is the angle of the 
normal to the edge. The Fermi surface is numerically discretized into states separated by 
constant arclength to remove the probability distribution’s dependence on Fermi velocity1. The 
nearly perfectly hexagonal Fermi surface of PdCoO2 has approximately flat edges which cause a 
high density of states to be injected at fixed angles. 

Charge carriers are injected into a simplified two-dimensional version of the PdCoO2 TEF device, 
beginning at a random position along the injection ohmic contact in an allowed state of the 
discretized FS (Fig. S11). These carriers then follow their semi-classical path1, ignoring bulk 
scattering, until interacting with either an edge or ohmic contact of the device. In the case of a 
non-ohmic edge, a carrier is scattered into a new randomly state chosen according to the 
probability distribution for that edge. To ensure detailed-balance, floating voltage leads absorb 
an incident carrier and subsequently, the carrier is reemitted at a random position along the lead 
in a randomly chosen allowed state for that edge. The voltage at a lead is given by  

𝑉 ∝
ϕcontact
𝐿contact

 

where ϕcontact is the number flux of carriers through the contact and 𝐿contact is the length of the 
device perimeter contacted by the voltage lead.  

Electrons propagate within the device until they are absorbed by a grounded ohmic contact. 
The simulations of Fig. 3b of the main text are comprised of 1001 magnetic field points, each 
consisting of 30000 charge carriers, where the voltage difference between a TEF and a reference 
voltage lead all normalized by the voltage at the injecting contact 𝑉source is plotted. We observe 
qualitatively similar magnetic field dependence between this simulated ratio and the measured 



resistance of the real device for both tested orientations of device geometry relative to the crystal 
axis. 

 

 

 

Supplementary Figure 11: Monte Carlo simulation of ballistic trajectories 

Normalized heat map of the position of electrons in the simulated TEF device geometry. Real 
space is divided into a grid. A count for each plaquette is incremented when an electron’s 
trajectory passes through that plaquette. This count is reflected in the tone of red, with darker 
red corresponding to a higher count (where the count has been cut off at a high number to 
provide contrast in the bulk of the device). An example of such a trajectory is shown in black. 
Electrons are injected at the source (maroon contact) and are propagated until hitting the drain 
(black contact). Electrons incident on floating contacts (blue) are absorbed and reinjected at a 
random point along the contact. The Fermi surface can be freely rotated relative to the device 
to simulate both the 2- and 3- beam orientations.  
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