
Supplementary Note 1

Classical ballistic conductance calculation

For most electron densities covered in the main text, electrons can be viewed as classical point-
like particles whose momentum distribution is determined by the band-structure and Fermi-Dirac
statistics. Similar to the calculation of current through 1D channels or point contacts1, our type
of collimator can be treated as a finite constriction connecting two electron reservoirs. Net current
only flows in an energy band for which there is a Fermi energy mismatch ∆E = Ef2 −Ef1 , where
Ef1 and Ef2 are the Fermi energies of each reservoir. In two dimensions, the angular flux density
is:

dJ

dθ
=
e

~
d2n

dθdk
∆E (1)

where n is the electron density, e is the charge of an electron, k is the electron wave vector
magnitude, and θ is the angle of electron propagation. At the Fermi level,
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4π2

(2)

where gk is the degeneracy of a fixed k state. In the case of graphene, the degeneracy is 4 due to
the valley and spin degrees of freedom. This gives:

dJ

dθ
=

2e2kf
πh

Vbias =
2e2

h

√
n

π
Vbias (3)

where Vbias = ∆E/e is the voltage difference between reservoirs. The electron flux density is
uniform and controlled by the 2D electron density. To calculate the angular current density
I(θ), the width of the constriction at a given angle w(θ) must be known. For the case of the
double pin-hole collimator, the projected width is w(θ) = cos (θ) [w0 − L0 |tan (θ)|] in the range
|θ| < tan−1 w0/L0 where w0 is the width of an aperture and L0 is the separation between
apertures. This means that the current emitted over a narrow range of angles ∆θ is:

I(θ)∆θ = Vbias
2e2

h

√
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π
cos (θ) [w0 − L0 |tan (θ)|] ∆θ. (4)

In our angular distribution measurement, we collect ballistic electrons across the width of
the device Wdev through a third pinhole collector as we vary the magnetic field. The collector

aperture has an acceptance angle in the small angle approximation that goes as ∆θ ≈ w0 cos (θ)
Wdev

.
Convolving the injection angular distribution with the collector angular distribution results in
the predicted nonlocal conductance:
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where θB = sin−1
(
eB
h

√
π
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)
is the central angle injected that reaches across the width of

the device at a given B. We integrate numerically Supplementary Eqn. 5 with w0 = 300 nm
and L0 = {0 nm, 850 nm} to produce the plot in Fig. 1d in the main text. If the width of the
collector is sufficiently small, Supplementary Eqn. 5 reduces to:
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The full width at half maximum then comes from solving: cos2 θFWHM

2

[
1− L0

w0
tan θFWHM

2

]
= 1

2 .

For narrow beams, this simplifies to: θFWHM = w0

L0
.
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Supplementary Note 2

Transverse electron focusing

Unlike in traditional transverse electron focusing (TEF) measurements, the center of most cy-
clotron orbits exiting our double-pinhole collimators are not collinear with the device edge. In-
stead, the median center is displaced off the edge by L0/2, and as a result, successive focusing
peaks occur at irrational ratios. For an injector-collector separation X0, the radii of curvature
that result in peak conduction from the collimator to the adjacent collector follow the relationship:

rn =

√(
L0

2

)2

+

(
X0

2n

)2

(7)

In our collimating device, X0 = 2.3µm and L0 = 850 nm. Two related consequences of the
arc center offset are (1) the incident angle to edges is no longer normal (θ = π

2 ) but rather

θn = tan−1 L0

nX0
and (2) there is a fixed minimum radius r∞ = L0

2 below which no ballistic
conduction should occur.

Supplementary Figure 1: diagram of TEF trajectories in our collimators. The center of each arc
is plotted as a solid circle, and is offset from the edge by half the length of a collimator. The
consequence of this: TEF peaks are not evenly spaced and the incident angle varies with rn.

Supplementary Note 3

Diffraction effects on transport: 2D Dirac equation simulations

Low energy electron excitations in graphene obey the 2D massless Dirac equation. This behavior
implies that electrons in our collimators should be subject to diffraction, which may particularly
affect electron transport at low electron densities. We thus perform finite-difference time-domain
(FDTD) simulations of the Dirac equation to predict the transport behavior of our collimators.

The Dirac equation for electrons in graphene is:

±vfσ · ∇Ψ = −∂tΨ (8)

where σ is a vector representation of the two Pauli matrices σx and σy, vf is the Fermi velocity,
∂t connotes a single partial time derivative, and ψ is the two-component single-particle wave-

function. Defining the two components as Ψ ≡
(
u
v

)
, and working in graphene’s natural units

(~ = 1 and vf = 1), Supplementary Eqn. 8 can be expressed as two coupled equations:

∂tu± ∂xv ∓ i∂yv = 0 (9)
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Supplementary Figure 2: a) Defined regions for simulation. gray corresponds to absorptive
conditions, blue to reflective, and red to the injection region. b) real part of u for a single
plane-wave solution. c) particular instance of random electron injection. d) Magnitude of Jy
(the current density in the vertical direction). e) Same measurement data, simulation, and√
n− n0 fit as contained in Fig. 2a of the main text, with the y-axis squared to emphasize the

square-root-dependence. Included is a phenomenological fit as a green dashed line.

∂tv ± ∂xu± i∂yu = 0 (10)

We discretize Supplementary Eqns. 9 and 10 using a staggered space and staggered time ap-
proach2 (which solves the fermion doubling problem), and apply reflective or absorptive boundary
conditions. Reflective boundary conditions are employed by setting u to zero at boundaries and
allowing v to propagate freely3 (setting boundary conditions on u instead of v is arbitrary; the
reverse selection would be equivalent). Absorptive boundaries are employed using the “absorbing
potential” approach2. As a method of injecting electrons, we couple in a time-varying complex
amplitude at the edge of the collimator ohmic contacts (Supplementary Fig. 2a). We inject
plane-waves (Supplementary Fig. 2b) at several injection angles to be summed over later.

To calculate total conductance of the collimator, we iteratively sum the plane-waves solutions
at a fixed energy with random amplitudes to approximate integration over all spatial probability
amplitudes. During each iteration (Supplementary Fig. 2c) we compute the current density:

J = evfΨ
†σΨ (11)

and then average J over all iterations (Supplementary Fig. 2d). The conductance plotted in Fig.
2a (and Supplementary Fig. 2e) then results from integrating over J at the top aperture.

These simulations give an absolute prediction for the collimator conductance. However, as
discussed in the main text, the measurement in Fig. 2a is partially attenuated by electron
reflections and reabsorption by the filter ohmic. Thus, we allow one free parameter: the absolute
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conductance. Good agreement between simulation and experiment is evident from the proper
scaling of the conductance with density: namely, in the limit of large n, the conductance goes as
G ∼ √n− n0. n0 is not a free parameter of the fit, yet it agrees well with the data.

This effect is likely due to the reflective boundary conditions of the first pinhole, as well
as diffraction throughout the collimator. At density n0, the Fermi wavelength λf = 89 nm
is an appreciable fraction of the width of the slits; under these conditions, the beam diffracts
significantly off of itself, constraining the available spatial modes that fit between slits. While a
detailed analysis of the mode shapes is beyond the scope of this work, it is worth noting that the
Fraunhofer diffraction off a single slit with this low density only has θFWHM ≈ 17◦, which is still
narrower than the classical angular distribution discussed above. This means that even under
modest doping, diffraction does not appreciably broaden the collimated beam.

A way to phenomenologically parametrize the net effect of diffraction and interference is to
assert that the effective width of the apertures is reduced by a length proportional to λf . We
find that making the mapping w0 → w0 − λf in Eqn. 2 of the main text reproduces our data
well. With this ansatz, we fit our data with one free scaling parameter (Supplementary Fig.
2e) and find excellent agreement. The generality of this exact mapping for different collimator
geometries bears further investigation, however the basic observation that finite-wavelength effects
moderately reduce the conductance relative to classical ballistic theory seems robust.

Supplementary Note 4

Comparison of simulation to existing methods

Our approach is built on the intuition that the ohmic leads should be a source of electrons that
are in superpositions of plane-wave states: since we are not factoring in any information on
the shape of the lead, we chose to treat the lead as a half-plane4. Our approach is valid in
the single-particle limit and the linear response regime, however other approaches, such as the
non-equilibrium Green’s function (NEGF) technique could be applied to the system to include
considerations of scattering and application of higher biases.

In a typical NEGF approach, semi-infinite leads are coupled to a finite region of interest,
an orthogonal basis of input and output conduction channels are solved for, and the system’s
Green’s function is computed in a manner that connects the finite region to these channels
via a “lead self energy”. With the solved Green’s function, the total transmission or current
density can be determined. In the Landauer-Büttiker formalism, which generally describes phase-
coherent transport including in the NEGF approach, each conduction channel caries a maximum

conductance e2

h . With this in mind, a worthwhile test of our approach is to show that our injection
scheme evenly populates the transverse modes of a fictitious semi-infinite lead.

To that end, we compute several instances of superposed, equiangularly-spaced plane-wave
states, and Fourier decompose the wave function ψ(x, z) at x = 0 and 0 < z < W as a means of
determining the drive amplitude of transverse modes of a semi-infinite lead χn ∝ sin nπz

W . The
apparent amplitude increases at high n (Supplementary Fig. 3a). However, the group velocity
vgn = vf

kzn
kf

of transverse waveguide modes (Supplementary Fig. 3b) is proportionally reduced

at high n so that the total transmission of each mode is constant (Supplementary Fig. 3c). The
abrupt cut-off for n > kfW

2π comes from the absence of any Fourier components greater than kf .
This approach trades elegance and efficiency for conceptual simplicity. Our injection scheme

doesn’t require basis transformation or matrix inversion: we simply define a geometry, inject
at several different plane-wave angles and then create random superpositions of these states to
stochastically solve for current and charge densities.
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Supplementary Figure 3: Transverse mode occupation of simulated injection scheme at two Fermi
wavelengths. a) normalized Fourier decomposition of the 1D wave amplitude at of a finite width
W aperture with kfW = 2π×25 (red) and kfW = 2π×50 (blue). b) longitudinal group velocity of
transverse modes. c) normalized transmission in each transverse mode taken as a product of (a)
and (b) to reflect total conductance. The uniform population up to n >= kfW

2π indicates
that our scheme properly excites all transverse modes up to a normalization factor. In
a-c, 104 random instances of the mixed plane-wave state were averaged.

Supplementary Note 5

Background subtraction for determining transmission probability

To accurately measure the transmission probability of electron trajectories through our collima-
tors, we measured a doubly-collimated signal. We found that this significantly reduces the impact
of a diffuse background, however, a small background remains even in this configuration. Here,
we discuss our approach regarding background subtraction. There is insufficient information to
fully disentangle the contributions of ballistic transport and the diffuse background, so we instead
compute upper and lower bounds for the background.

For the upper-bound, we first observe that the wide-collection angle signal (S3F3) has a nearly
identical functional form for the diffuse background as for the narrow collection angle signal (S3).
We plot S3F3/9 over S3 in Supplementary Fig. 4, and observe significant agreement between
the two curves at |B| > 50 mT. If we assume that the majority of the background current in S3
results from electrons scattering inside the collimator chamber, then the background is simply
S3F3/9. We plot S3-S3F3/9 (solid black line, Supplementary Fig. 4) which has a peak height of
0.042.

Alternatively, if we assume that the contacts in F3 absorb all incoming electrons, then the
only available background electrons must pass ballistically through both collimator apertures.
For simplicity, if we assume an isotropic background, the background should be proportional to
cos2 θ, where θ = sin−1

(
eB
h

√
π
nL0

)
. We fit such a curve to the regime |B| > 50 mT (dotted

black line, Supplementary Fig. 4). Using this background, the conductance peak height is 0.051.
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Supplementary Figure 4: Diffuse background subtraction for measuring transmission probability.
Normalized current S3 is plotted in blue. The normalize current S3F3 is scaled by a factor of
9 to best fit the diffuse background of S3 (red line). The difference of the two, S3-(S3F3)/9, is
plotted as solid black. This represents a lower-bound for the background-subtracted conductance.
Alternatively, a fit assuming a completely isotropic background is plotted as a dotted black line.
This should be the minimum background signal.

The true diffusive background is likely between these two limits given that the contacts have
reasonably high (but not perfect) transmission probabilities.

Supplementary Note 6

Estimate of attainable collimator currents

In the main text’s discussion pertaining to Fig. 2, we sourced Isource = 50 nA . kBT
eRsource

, where
Rsource ∼ 1 kΩ is the resistance from the source to all other contacts. The choice to operate in
this low injection current regime ensures that the applied bias is below the thermal bandwidth
(kBT = 140 µeV) at our measurement temperature of T = 1.6 K, and that the measurement
stays well within the linear response regime.

In our measurements, we did not probe the maximum current that could be sourced while
maintaining collimation; however this is a relevant consideration for potential applications. With
this in mind, ohmic contacts of the size we use can readily pass 20× more current than in our
measurement without degradation. If we were to increase the injected current to this level (1 µA),
we would not expect substantial changes in the collimated beam shape: the thermal bandwidth
would be significantly increased but would remain below 30 K. Recent work5 has indicated that
the mean free path at this energy scale would be ∼ 10 µm; this is large compared with the width
of our device (2 µm), which means that ballistic transport should still dominate. Considering
this, we anticipate that the relatively low current in the doubly-collimated configuration could
be enhanced to ∼ 60 nA without appreciable loss of collimation.

Supplementary Note 7

Ballistic simulations

Because most of the graphene sheet perimeter is not contacted by ohmics, many electrons scatter
several times off of device boundaries before being absorbed by a grounded ohmic. This makes it
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Supplementary Figure 5: A simulation of our Hall-bar at the first magnetic focusing peak (rc =
720 nm) with pscatter = 0 and ptrans = 0.667. Carriers are sourced at the red edge contact and
flow through the device until they reach one of the grounded (black) contacts. Blue contacts
are floating, and all dashed lines indicate physical contacts. One particular carrier’s path is
highlighted in red with arrows pointing in the direction of travel. Darker background color
indicates higher density of trajectories.

important to consider all possible trajectories in accurately modeling our device. Charge carriers
are first injected into the graphene sheet at a random position along the source contact and at
a random angle. These carriers follow their classical trajectories until they hit an edge or they
scatter in the bulk with a characteristic scattering length lscatter. When they hit an edge, the
appropriate behavior–scatter, specularly reflect, transmit–is determined from the nature of the
edge hit and from control parameters pscatter, the probability an edge will randomly scatter, and
ptrans, the probability that an ohmic will transmit. Refractive behavior is not considered in this
analysis given that the electron density is expected to be uniform over the bulk of the device.
This process is repeated for each injected carrier until it is absorbed in a grounded contact. In
the simulations both here and discussed in the main text, 40,000 carriers were injected into the
sheet.

For current measurements, current drains are grounded and the number of carriers absorbed
into each contact is recorded. The measured current flowing out a particular contact is given by
Icontact/Isource = ncontact/N where ncontact is the number of carriers that end up in a particular
grounded contact and N is the total number of injected carriers. To ensure detailed-balance, float-
ing voltage leads are simulated by absorbing incident carriers, followed by re-emitting the same
carriers at random positions and angles. The voltage in these leads should be proportional to the
flux of carriers through the edge contacts. Thus, the voltage is given by Vmeas ∝ φcontact/Lcontact

where φcontact is the number flux of carriers through the contact and Lcontact is given by the
length of the contact along the graphene sheet.

To model edge behavior in our device, we need to account for the complete fabricated device
geometry. In particular, certain ohmics were mildly misaligned, resulting in asymmetric edge
contact to the device region in C1 and C4. Based directly off of optical micrographs of the
device (e.g. Fig. 1b), we defined the geometry and contacts as shown in Supplementary Fig.
5. The graphene sheet is defined first (grey), then contacts are added on top (dashed lines) in
the measurement configuration from Fig. 3 of the main text. Shown is a snapshot at a constant
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magnetic field corresponding to a radius of curvature of rc = 720 nm. We have highlighted one
trajectory as a guide to the eye. Note that this trajectory is absorbed and re-emitted several
times by floating ohmics.

The scattering probability of the edges is an experimental unknown that we try to understand
based on comparison with our simulations. We thus conducted magneto-transport simulations
at several values of pscatter, which is the probability that a given charge carrier will scatter
following a cosine distribution normal to the edge, while holding ptrans = 0.67 constant. We
compare the area under the first (no bounce) and second (one bounce) TEF peaks, and as seen
in Supplementary Fig. 6, we simulated magnetic field sweeps over a range from pscatter = 0 to
pscatter = 1. The second peak’s area decreases linearly with increasing scattering probability
while the first remains largely unchanged, so we compare the ratio with our experimental data
both on the hole and electron side to find that the scattering probability on the electron side is
pscatter ≈ 1, and pscatter ≈ 0.5 on the hole side.
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Supplementary Figure 6: Edge scattering simulations. a) Simulated magnetic field sweeps using
the contact scheme shown in Supplementary Fig. 5. The edge scattering probabilities range from
pscatter = 0 (red) to pscatter = 1 (black). There is little change in the first focusing peak (1), but
the second peak (2) decreases in height and area with increasing scattering probability. b) Ratio
of area under the second magnetic focusing peak to the area under the first decreases linearly
with increasing edge scattering probability. The hole- and electron-side ratios for our data are
plotted in black and red, respectively. The lighter-colored shading indicates the uncertainty in
the peak ratios from our data. Measurement data for electron doped regime (c) and hole doped
regime (d). Integration ranges for peaks are highlighted in red.

To optimize ptrans, we observe the functional form of all three non-local resistances and find
the best-fit conditions. For the electron side, this corresponds to ptrans = 0.67. For the hole side,
the contact resistances are higher, and the best fit simulation is pscatter = 0.67 and ptrans = 0.1.
As is evident, the scattering probability is modestly higher than the above analysis, resulting
from a weak dependence of A2/A1 on ptrans. We plot the final fit on the hole side (analogous to
Fig. 3d in the main text) in Supplementary Fig. 7. The fit is qualitatively good, though not as
striking as for the electron side. Given that there is substantially greater spurious emission due
to high contact resistance as well as higher specularity of reflections for the hole-doped data, it
is actually surprising to have as close a fit as observed.
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Supplementary Figure 7: Simulation vs experiment in hole doped regime. Data are plotted in
blue, and simulation results (pscatter = 0.67 and ptrans = 0.1) are plotted in red.
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[1] Ryndyk, D. Landauer-Büttiker Method. In Theory of Quantum Transport at Nanoscale,
17–54 (Springer International Publishing, 2016).

[2] Pinaud, O. Absorbing layers for the Dirac equation. Journal of Computational Physics 289,
169–180 (2015).

[3] Alonso, V., Vincenzo, S. D. & Mondino, L. On the boundary conditions for the Dirac equation.
European Journal of Physics 18, 315 (1997).

[4] Barnett, A. H., Blaauboer, M., Mody, A. & Heller, E. J. Mesoscopic scattering in the half
plane: Squeezing conductance through a small hole. Physical Review B 63, 245312 (2001).

[5] Lee, M. et al. Ballistic miniband conduction in a graphene superlattice. Science 353, 1526–
1529 (2016).

9


