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Moiré lattices provide a highly tunable platform for exploring the interplay between electronic
correlations and band topology [1]. Introducing a second moiré pattern extends this paradigm:
interference between the two moiré patterns produces a supermoiré modulation, opening a route to
further tailor electronic properties. Twisted trilayer graphene generally exemplifies such a system:
two distinct moiré patterns arise from the relative twists between adjacent graphene layers. Here,
we report the observation of correlated phenomena across a wide range of twisted trilayer graphene
devices whose twist angles lie along two continuous lines in the twist-angle parameter space [2–5].
Depending on the degree of lattice relaxation, twisted trilayer graphene falls into two classes [4]:
moiré polycrystals [6, 7], composed of periodic domains with locally commensurate moiré order, and
moiré quasicrystals, characterized by smoothly varying local moiré configurations [8]. In helically
twisted moiré polycrystals, we observe an anomalous Hall effect, consistent with topological bands
arising from domains with broken xy-inversion symmetry. In contrast, superconductivity appears
generically in our moiré quasicrystals. A subset of these systems exhibits signatures of spatially
modulated superconductivity, which we attribute to the supermoiré structure. Our findings uncover
the organizing principles of the observed correlated phases in twisted trilayer graphene, highlight the
critical roles of the supermoiré modulation and lattice relaxation, and suggest a broader framework
in which magic conditions arise not as isolated points but as extended manifolds within the multi-
dimensional twist-angle space of complex moiré materials.

A small mismatch between the lattice vectors of adja-
cent two-dimensional (2D) materials generates a moiré
pattern: an emergent superlattice that modulates the
interlayer atomic registry on length scales much larger
than the atomic lattice constant. The twist angle degree
of freedom enables continuous tuning of moiré poten-
tials and hence electronic structures, establishing moiré
materials as a designer platform for novel quantum phe-
nomena, including correlated insulating states [9], super-
conductivity [10], and integer and fractional quantum
anomalous Hall effects [11, 12]. Most prior studies have
focused on systems with a single moiré pattern, such as
twisted bilayer graphene, where correlated states emerge
near discrete “magic” twist angles that yield flat bands.
Multi-moiré systems, which host two or more distinct
moiré patterns, provide additional twist angle degrees of
freedom and enable the exploration of magic conditions
in higher-dimensional twist-angle spaces.

Here, we focus on one of the simplest multi-moiré
systems—twisted trilayer graphene (TTG), in which
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three graphene monolayers are stacked with two inde-
pendent twist angles: θ12 between layers 1 and 2, and
θ23 between layers 2 and 3 (Fig. 1a). This trilayer stack-
ing yields either a helical or alternating twist configura-
tion, depending on whether θ12 and θ23 have the same
or opposite signs, respectively. Except in the special
cases of mirror-symmetric TTG (θ12 = −θ23) and twisted
monolayer-bilayer graphene (θ12 = 0 or θ23 = 0), TTG
generally hosts two incommensurate moiré patterns, re-
sulting in a rich and tunable multi-moiré landscape. Pre-
vious studies reported contrasting correlated phenom-
ena in several specific configurations of TTG, includ-
ing superconductivity near (θ12, θ23) ≈ (1.6°,−1.6°) or
(1.4°,−1.9°) [8, 13, 14], and an anomalous Hall effect
(AHE) near (θ12, θ23) ≈ (1.8°,1.8°) [6] (these works are
denoted as dark green circles in Fig. 1a). However, the
underlying principles that govern the ground states of
different twist angle configurations, and the rules that
dictate where correlated phenomena arise in the two-
angle space, remain unclear.

In this work, we observed correlated ground states in
seven multi-moiré TTG devices with new twist angle
configurations, denoted as red circles in Fig. 1a (see also
Methods A, Methods B, and Extended Data Fig. 1).
Remarkably, all samples with twist angles near two con-
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Fig. 1. Magic continuum in TTG. a, Structural parameter space of TTG. Solid circles and their hollow equivalents denote
twist-angle combinations where strong correlations were observed in previous works (dark green) and in the present study (red).
They lie on two branches of a magic continuum in the parameter space. Based on the degree of lattice relaxation, TTG can be
categorized into moiré quasicrystals (purple-shaded regions) and moiré polycrystals (orange-shaded regions). For large values
of ∣θ12∣ (∣θ23∣) along the magic continuum, one of the layers becomes electronically decoupled and the other two layers form
magic-angle twisted bilayer graphene where ∣θ23∣ (∣θ12∣) ∼ 1.1

○ (green-shaded regions). MATBG, magic-angle twisted bilayer
graphene; MLG, monolayer graphene; MATTG, magic-angle (alternating and mirror-symmetric) twisted trilayer graphene;
MAHTG, magic-angle helical trilayer graphene. b, Unrelaxed structure of TTG with (θ12, θ23) = (2°,−4°). Purple and orange
dots represent AA stacking of the top and bottom pairs of adjacent layers, respectively. Together they form a supermoiré
pattern with a unit cell outlined by a grey diamond. Blue, cyan, and magenta circles mark high-symmetry points of the
supermoiré unit cell, where the shifts between two moiré AA stacking sites are 0, β, and δ, respectively. c-e, Zoomed-in
views of the moiré patterns at the three points marked in b. Black diamonds outline the moiré unit cells under the periodic
approximation. f-i, Non-interacting band structures for different configurations along the magic continuum: θ12 ∶ θ23 = 1 ∶ 2
(f), 1 ∶ −2 (g), 1 ∶ −3 (h), and 1 ∶ 3 (i). These calculations are performed with zero interlayer electric potential difference.
Local moiré band structures at the various high-symmetry points within the supermoiré unit cell are shown; each is coloured
to match its corresponding panel in c-e.
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tinuous lines in the parameter space exhibit either su-
perconductivity or AHE. This fact, together with the
physical expectation that the electronic structure varies
smoothly with twist angles, strongly suggests that corre-
lated phases in TTG are not restricted to isolated magic
points but persist along an extended manifold, which we
refer to as “magic continuum”.

ELECTRONIC STRUCTURE OF MULTI-MOIRÉ
TTG

Due to the lack of moiré commensuration, a global
moiré band structure does not exist for multi-moiré
TTG. Nonetheless, its electronic properties can be ef-
fectively modelled as spatially varying local moiré bands
by approximating the structure as locally periodic on
the moiré length scale. This is implemented by approx-
imating the two twist angles as a fraction, (θ12, θ23) ≈
(pθ0, qθ0) with p and q being coprime integers, and ap-
plying a small structural distortion to render the two bi-
layer moiré wave vectors commensurate [3, 4]. Within
this framework, a generalized Bistritzer–MacDonald
continuum model [15] can be applied locally within each
moiré unit cell of size lm ≈ a0/θ0, where a0 = 0.246nm is
the graphene lattice constant. The resulting local moiré
bands are parametrized by the relative lateral displace-
ment d between the two moiré lattices, which varies
smoothly and periodically over the supermoiré (moiré
of moiré) scale, lsm ≈ 2a0/ ∣(p + q)pqθ

2
0 ∣. Figure 1b illus-

trates the unrelaxed structure of multi-moiré TTG for
(θ12, θ23) = (2°,−4°), with the supermoiré unit cell out-
lined in gray. Figures 1c-e show the approximated moiré
unit cell at three high-symmetry points within the super-
moiré unit cell (indicated by coloured circles in Fig. 1b),
with d labelled as 0, β, and δ, respectively. These
distinct moiré patterns exhibit different symmetries de-
pending on d [16], and lead to a supermoiré-modulated
local electronic structure. This is illustrated in Figs. 1f-
i, which present calculated non-interacting moiré band
structures at the aforementioned d (indicated by differ-
ent colours), for simple (p, q) of (1,2) (f), (1,−2) (g),
(1,−3) (h), and (1,3) (i) (Methods H).

By maximizing the peak in the density of states aver-
aged over different d values, one can determine a magic
angle for each (p, q) combination, presenting target het-
erostructures likely to host correlated phases. Within the
(θ12, θ23) parameter space, these magic angles for vari-
ous (p, q) ratios lie along two branches of a magic con-
tinuum that extend through the alternating and helical
twist quadrants, as shown in Fig. 1a [2–5]. Exchang-
ing θ12 and θ23 (−θ23) yields equivalent helical (alternat-
ing) structures. Therefore, the helical and alternating
branches of the magic continuum are mirror symmetric
about the lines θ12 = θ23 and θ12 = −θ23, respectively.
In the following, we assume ∣θ23/θ12∣ ≥ 1 without loss of
generality. Notably, the two branches are not mirror im-
ages of each other about the θ23 = 0 axis. For instance,
the magic angle for θ12 = θ23 is around 1.8°, whereas for

θ12 = −θ23, it is around 1.6°.
As either ∣θ12∣ or ∣θ23∣ increases, both branches of the

magic continuum asymptotically approach the limit of
magic-angle twisted bilayer graphene stacked on an elec-
tronically decoupled monolayer [17] (green-shaded re-
gions in Fig. 1a), in which the local low-energy elec-
tronic properties have a vanishing dependence on d (note
that the decoupled layer is still expected to affect the
bilayer via screening). This reduced d-dependence is ev-
ident when comparing the local moiré band structures
for ∣θ23/θ12∣ = 3 (Figs. 1h,i) with those for ∣θ23/θ12∣ = 2
(Figs. 1f,g). Below, we focus on the four structures with
(∣θ23/θ12∣ ≈ 2,3), in which the supermoiré modulation of
the local electronic properties plays a more important
role. Results from two additional samples with ∣θ23∣ ≈ 15°
are summarized in Extended Data Fig. 2, serving as ex-
amples in which the third layer is electronically decou-
pled (see Methods C for a description of the twist angle
determination).

CORRELATIONS AND AHE IN TTG MOIRÉ
POLYCRYSTALS

Lattice relaxation in TTG depends on the specific an-
gular configuration and can strongly reshape the super-
moiré landscape. When θ23/θ12 is close to ±1 or 2, TTG
is predicted to relax to moiré-periodic domains sepa-
rated by sharp domain walls on the supermoiré scale,
resembling the structure of a polycrystal [4] (orange-
shaded regions in Fig. 1a). While moiré polycrys-
tals with ∣θ23/θ12∣ ≈ 1 have been studied experimen-
tally [6, 7, 13, 14], here we report the first investigation
of a moiré polycrystal with θ23/θ12 ≈ 2.
Figure 2a shows the longitudinal resistance Rxx mea-

sured at B = 0 and T = 300mK as a function of vertical
displacement field, D, and number of electrons per moiré
unit cell, νm. Here, B and T denote the perpendicu-
lar magnetic field and temperature, respectively. The
moiré unit cell was defined in the previous section using
the local periodic approximation. In devices where ei-
ther p = 1 or q = 1, this unit cell coincides with that of
the small-angle bilayer moiré lattice (see, for example,
Figs. 1c-e). The large Rxx peaks at νm = ±4 originate
from the reduced density of states when the flat moiré
bands are empty or full. Additional Rxx peaks appear
at νm = −1,−2 and −3, indicating spin and valley de-
generacy lifting, driven by electronic correlations. To
search for topologically non-trivial phases, we first mea-
sured the anomalous Hall response, RAHE

yx , at small B, as
illustrated in Figs. 2b, c (see Methods B for the mea-
surement details). Pronounced values of ∣RAHE

yx ∣ near
νm = ±1 and ±3 signal AHE, corroborated by field sweep
measurements shown in Figs. 2d-g. Hysteresis of the
field-antisymmetrized Hall resistance, Ryx, around zero
magnetic field reveals a ferromagnetic ground state (see
Methods B for a description of the antisymmetrization
procedure and Extended Data Fig. 3 for the raw data).
The temperature dependence of Ryx curves near νm = −1
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Fig. 2. Correlated states and AHE in polycrystalline TTG. a, Rxx versus νm and D measured at B = 0 and T = 300mK
for a moiré polycrystal TTG device with θ23/θ12 ≈ 2 (Device A), showing resistance peaks at charge neutrality (νm = 0), at the
full filling of the first moiré bands (νm = ±4), and at correlated states (ν = −1,−2,−3). b,c, RAHE

yx (see Methods B) measured

at T = 30mK in hole- (b) and electron-doped (c) regions outlined by grey dashed polygons in a. Regions of large RAHE
yx at

νm = ±1,±3 indicate AHE. d, Field-antisymmetrized Ryx taken at νm = −0.94 and D/ϵ0 = 0.01Vnm−1 (cyan circle in b) while
sweeping B up (solid) and down (dashed) at different temperatures as indicated, demonstrating an AHE. Curves at different
temperatures are shifted by 0.6kΩ for clarity. e, Same as d, taken at νm = 2.72, D/ϵ0 = 0.42Vnm−1 (pink triangle in c).
Curves at different temperatures are shifted by 0.48kΩ for clarity. f , Same as d, taken at νm = −2.70, D/ϵ0 = −0.28Vnm−1,
T = 0.1K (blue diamond in b). g, Same as d, taken at νm = 0.98, D/ϵ0 = 0.30Vnm−1, T = 0.1K (red pentagon in c). h,
Calculated supermoiré structure of TTG with θ12 = 1.30°, θ23 = 2.60°, including lattice relaxation. As in Fig. 1b, purple and
orange dots represent AA stacking of the top and bottom pairs of adjacent layers, respectively. Lattice relaxation leads to the
formation of moiré periodic domains with d = ±δ that host topological flat bands. Background colour represents Egap ×C

tot
K

calculated for the local moiré lattices, where Ctot
K is the total Chern number per spin of the pair of flat bands in valley K, and

Egap ≥ 0 is the minimum direct band gap at νm = ±4. Red (blue) hues represent Ctot
K = 1 (Ctot

K = −1), whereas gray indicates
gapless domain walls.

and 3 indicates a Curie temperature between 1.9K and
4.6K. Similar to other carbon-based materials, due to
the weak spin-orbit coupling, the ferromagnetism ob-
served here likely has an orbital origin [18, 19], a mani-
festation of non-zero Berry curvature.

Zero-field topological bands have not been observed in
single-moiré 2D systems with global xy-inversion (C2z)
symmetry. In contrast, despite the global C2z sym-
metry of our system, the multi-moiré structure com-
bined with the aforementioned lattice relaxation leads
to mesoscopic domains with uniform d = ±δ, which lo-
cally break C2z symmetry (see Fig. 2h for the relaxed
structure calculated using the method of ref. [20–22]).
This behaviour is analogous to helical trilayer graphene
with θ12 ≈ θ23 [6]. Indeed, our band structure calcu-
lations produce nearly flat moiré bands with non-zero

valley Chern numbers within each domain (Fig. 1f , ma-
genta). The observed AHE around odd integer fillings
indicates spontaneous time-reversal symmetry breaking,
likely originating from interaction-driven valley polariza-
tion or imbalance. Since neighbouring supermoiré do-
mains are related by a C2z operation, their local moiré
flat bands possess opposite valley Chern numbers. When
globally polarizing to the same valley, this results in a
“Chern mosaic” (see Fig. 2h) [23–25]. These Chern do-
mains are separated by topologically protected gapless
domain walls, consistent with the absence of quantized
AHE in the experiment. We note that while the size
and shape of the domains are extremely susceptible to
strain and twist angle disorder [7], the band topology is
expected to be robust.
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Fig. 3. Correlated states and robust superconductivity in quasicrystalline TTG. a-c, Rxx versus νm andD measured
for devices with θ12 ∶ θ23 ≈ 1 ∶ −2 (Device B1, a), θ12 ∶ θ23 ≈ 1 ∶ −3 (Device C, b), and θ12 ∶ θ23 ≈ 1 ∶ 3 (Device D, c), showing
resistance peaks at charge neutrality (νm = 0), at the full filling of the first moiré bands (νm = ±4), and various correlated
states at integer and fractional fillings. Blue regions indicate superconductivity. All data was taken at B = 0 and T ≈ 100mK.
d-f , Rxx versus νm and T measured for Device B1 (d), Device C (e), and Device D (f), along the magenta lines marked in
a-c (D values indicated in d-f), demonstrating superconducting transitions for all three quasicrystalline TTG devices on both
electron- and hole-doped sides with critical temperatures on the order of 1K. g-i, Vxx versus IDC curves at various T , for
the corresponding devices in a-c. νm and D values are indicated. Bottom-right insets show the same data in log-log scale,
sampled at finer temperature increments. By fitting to Vxx ∝ I3DC (dashed magenta lines), we extract TBKT = 0.71K,0.90K,
and 1.14K for the three devices, respectively. Top-left insets show differential resistance dVx/dIx versus IDC and small B,
demonstrating Josephson interference patterns—evidence for phase coherent transport.

CORRELATIONS AND SUPERCONDUCTIVITY
IN TTG MOIRÉ QUASICRYSTALS

When θ23/θ12 is away from ±1 and 2, lattice relaxation
is expected to have minimal impact on the supermoiré

landscape, i.e., d evolves smoothly. The resulting struc-
ture has been referred to as a “moiré quasicrystal” [8] due
to the incommensuration between the two moiré lattices.

Here, we present a systematic study of quasicrystalline
TTG along both helical and alternating branches of the
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magic continuum, showing results from devices close to
simple angle ratios θ23/θ12 = −2,−3 and 3. Figures 3a-
c show Rxx versus νm and D measured at B = 0 and
T = 100mK. Remarkably, all three structures demon-
strate superconductivity, indicated by the deep blue ar-
eas. In addition to superconductivity, a series of corre-
lated states at integer and fractional fillings manifests as
peaks in Rxx, as summarized in Extended Data Table 1
(see Extended Data Fig. 4 and Methods D for corre-
lated states under finite magnetic field). Local dispersive
moiré bands coexist with local flat bands in quasicrys-
talline TTG (Figs. 1g-i), allowing the former to shunt
high-resistance correlated states supported by the latter.
As a result, high-resistance states are prominent only
along a diagonal line, where the Fermi level aligns with
a low density of states in the local dispersive bands. In
Device D (shown in Fig. 3c), correlated high-resistance
states are weak or absent, which may result from com-
petition with superconductivity. Extended Data Fig-
ure 5 shows the same measurement performed at ele-
vated temperature, where the correlated states become
clearly resolved. Identifying the spin, valley, and sublat-
tice order of different correlated states remains an open
question for future theoretical and experimental stud-
ies. The many-body ground states are likely spatially
modulated within the supermoiré unit cell due to the
d-dependent moiré band structure, making local probes
such as scanning tunnelling microscopy well-suited for
this task [26, 27].

To further explore the superconducting properties of
quasicrystalline TTG, we measured Rxx versus νm and
T at constant D, showing characteristic superconduct-
ing domes with transition temperatures Tc around 1K
(Figs. 3d-f). Figures 3g-i present the DC voltage-
current (Vxx–IDC) characteristics at selected values of
νm and D as a function of temperature. As T decreases,
the Vxx–IDC curves evolve from a linear (Ohmic) regime
to a non-linear profile, characteristic of superconductiv-
ity. By fitting to Vxx ∝ I3DC, we extract the Berezin-
skii–Kosterlitz–Thouless transition temperature, TBKT,
as shown in the bottom-right insets of Figs. 3g-i. Fur-
thermore, Vxx–IDC measurements under a small per-
pendicular magnetic field reveal Fraunhofer-like inter-
ference patterns (Figs. 3g-i, top-left insets), providing
compelling evidence for the presence of phase-coherent
superconductivity.

SIGNATURES FOR
SUPERMOIRÉ-MODULATED

SUPERCONDUCTIVITY

In Devices B1 and D, the superconducting regions ex-
hibit a two-dome structure as a function of νm and T ,
shown in Figs. 3d,f . This behaviour is further sub-
stantiated by the Rxx(T ) traces in Figs. 4a,b, which
exhibit two distinct transition temperatures where the
resistance sharply drops upon cooling. Notably, this
two-dome behaviour is a ubiquitous feature for devices
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Fig. 4. Signatures for supermoiré-modulated super-
conductivity in quasicrystalline TTG. a-b, Rxx versus
T measured in Device B1 (a) and Device D (b), both demon-
strating a two-step behaviour of the superconducting transi-
tion. Curve colours in a (b) match the tick colours at the bot-
tom of Fig. 3d left (Fig. 3f left), indicating νm and D where
the data was taken. c, dVx/dIx versus IDC and T measured
in Device B1 (νm and D values are indicated). d, Same as c,
measured in Device D. For both devices, two superconducting
coherence peaks appear below the two superconducting tran-
sition temperatures, respectively. Non-linear resistance with
coherence peaks indicates the existence of Cooper pairs in
the intermediate temperature regime between the two tran-
sitions.

with θ23/θ12 ≈ −2 and 3 (see Extended Data Fig. 6 for
more results from Devices B1, B2, and D), strongly in-
dicating that it is intrinsic to the system rather than
arising from extrinsic factors such as disorder. Between
the two transitions, Rxx(T ) traces can be well described
by the superconducting proximity effect model (Meth-
ods E and Extended Data Fig. 7) [28], suggesting the ex-
istence of superconductor-normal metal-superconductor
junctions. Furthermore, we measured differential re-
sistance dVx/dIx as a function of IDC and T (shown
in Figs. 4c,d and Extended Data Fig. 8) and magne-
toresistance Rxx(B) as a function of T (shown in Ex-
tended Data Fig. 9), both of which indicate that part
of the sample remains superconducting between the two
transition temperatures (see detailed discussion in Meth-
ods E).

Similar transport behaviour was reported in 2D sys-
tems with patterned superconducting islands [28–32],
where the higher transition signals the onset of super-
conductivity within each island, and the lower transition
corresponds to the establishment of global phase coher-
ence across islands. A highly likely explanation of our
results is that the superconductivity in these devices is
spatially modulated on the supermoiré length scale, nat-
urally originating from the d-dependent local electronic
structure (see schematic in Extended Data Fig. 10). At
the higher transition temperature, certain regions within
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the supermoiré unit cell—such as the area near d = 0
in the schematic—become superconducting, resulting in
a sharp drop in Rxx. Upon further cooling, two sce-
narios may occur at the lower transition temperature:
(1) Josephson coupling between isolated superconduct-
ing regions becomes sufficiently strong to establish global
phase coherence; or (2) the superconducting regions ex-
pand and form a percolating network of intrinsic super-
conductors. In both cases, these developments lead to a
vanishing Rxx. Further discussion of this physical pic-
ture is provided in Methods E.

OUTLOOK

Single moiré twisted graphene systems can be divided
into two families: alternating twisted graphene [9, 10,
13, 14, 33–35] (including twisted bilayer graphene) and
twisted M+N-layer graphene [36–39] (M, N, or both are
larger than 1). Although correlated states emerge in
both families when the interlayer twist angles are ap-
propriate, robust superconductivity has thus far been
observed only in the former [10, 13, 14, 33–35], whereas
the latter is typically characterized by Chern bands and
usually exhibits the AHE [38, 39]. While non-trivial
band topology is enabled by the absence of C2z sym-
metry, the underlying conditions for superconductivity
in moiré graphene systems require more investigation.
Our systematic study of TTG indicates a phenomenolog-
ical trend along the magic continuum: helically twisted
moiré polycrystals, dominated by regions with d = ±δ,
consistently host AHE, whereas robust superconductiv-
ity emerges in TTG moiré quasicrystals, where d varies
smoothly across the supermoiré unit cell. This obser-
vation suggests that superconductivity is suppressed in
regions where d = ±δ, despite the presence of local flat
moiré bands. Thus, a high density of states alone is in-
sufficient to drive superconductivity in graphene moiré
systems, suggesting that additional factors—such as lo-
cal symmetries—play an important role.

Furthermore, our results reveal the profound effects of
the supermoiré. It gives rise to AHE in globally-C2z-
symmetric moiré polycrystals and modulates supercon-
ductivity in moiré quasicrystals. The latter, in partic-
ular, provides a new platform for studying the quan-
tum breakdown of superconductivity [40]. While previ-
ous studies have constructed proximity-coupled arrays
of superconducting islands to probe such transitions,
moiré quasicrystals offer new opportunities due to sev-
eral unique properties: (1) superconducting regions are
naturally defined by atomically smooth, spatially vary-
ing moiré potentials rather than by lithographic pattern-
ing, (2) the characteristic size of superconducting re-
gions is comparable to the superconducting coherence
length, (3) the superconductivity is likely unconven-
tional, as in other superconducting graphene moiré sys-
tems [41–46], and (4) regions with broken C2z symme-
try may host non-trivial local band topology that alters
Josephson coupling. These features, combined with the

exceptional tunability of 2D moiré materials, position
moiré quasicrystals as a promising platform for explor-
ing superconductor-metal transitions, anomalous metal-
lic phases, and related emergent quantum phenomena.

Lastly, the concept of a magic continuum high-
lights that correlated phenomena are not confined to
isolated “magic points,” but can persist across ex-
tended regions—such as “magic hyperplanes”—in multi-
dimensional parameter spaces spanned by continuous
variables including multiple twist angles, strain, and
pressure. This perspective offers a versatile route to
exploring and engineering novel quantum phases [47–
49]. With the advent of in-situ techniques capable of
simultaneously tuning multiple degrees of freedom in 2D
materials [50, 51], the landscape of accessible strongly
correlated systems can be greatly expanded.
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METHODS

A. Device fabrication

The van der Waals heterostructures were assembled in two parts using a standard dry-transfer technique [52]. First,
a hexagonal boron nitride (hBN) flake (usually with a thickness of 15 nm - 30 nm) and a few-layer graphene strip were
picked up by a poly(bisphenol A carbonate)/polydimethylsiloxane stamp. This bottom stack and poly(bisphenol A
carbonate) film were released onto a 285nm SiO2/Si substrate. For devices with metallic bottom gates, only an
hBN flake was picked up and released onto a pre-patterned metallic strip (15 nm Pd/Au alloy with a 2 nm Cr or Ti
adhesion layer). After dissolving the poly(bisphenol A carbonate) film in chloroform, the bottom stack was annealed
at 350 °C under vacuum for 12 hours to remove polymer residues. Then, tip cleaning was performed using the contact
mode of an atomic force microscope to further clean the surface.

For assembling the twisted trilayer graphene, a monolayer graphene flake was cut into three pieces using an optical
microscope with a fibre-coupled supercontinuum laser. A second poly(bisphenol A carbonate)/polydimethylsiloxane
stamp was used to pick up an hBN flake and the three graphene pieces subsequently. Before the second and third
pieces of graphene were picked up, the stage was rotated to realize the desired interlayer twist angle. Each layer of
graphene was picked up slowly and at room temperature to minimize any unintentional perturbation of the twist
angles. After assembling the top stack, it was released onto the bottom stack at 150 °C - 170 °C. This release step
was done quickly to minimize the time spent at elevated temperatures.

The Hall bar was defined in a bubble-free region of the completed heterostructure, identified using atomic force
microscopy. Patterns were defined using an Elionix ELS-HS50 electron-beam lithography system. A metallic top gate
(25 nm - 65 nm Au with a 2 nm - 5 nm Cr or Ti adhesion layer) was deposited using a Sharon thermal evaporator. The
device was connected using one-dimensional contacts (63 nm - 75 nm Au with a 2 nm - 5 nm Cr adhesion layer) [53].
Finally, the device was etched into a Hall bar geometry using reactive-ion etching.

B. Electrical transport measurements

Pre-characterization of the devices was carried out in a Janis helium-3 refrigerator with an 8T perpendicular
superconducting magnet and a base temperature of about 290mK. A home-made 65 cm twisted-pair copper tape
filter with ∼ 20MHz cut-off frequency [54] was thermally anchored at the helium-3 pot to prevent heating from
Johnson noise and reduce the electron temperature. DC voltages were applied to the top and bottom gates using
Keithley 2400/2450 source-measure units. The AC excitation of 1nA − 10nA at 10Hz − 25Hz was applied using
Stanford Research Systems SR830 or SR860 lock-in amplifiers. The corresponding AC currents and voltages were
preamplified by DL-1211 current preamplifiers and DL-1201/SR560 voltage preamplifiers respectively, then measured
by the lock-in amplifiers. The temperature was measured using a calibrated CX-1010-CU-HT-0.1L thermometer.

A portion of the dilution refrigerator measurements were performed in a Bluefors LD250 using an Attocube two-
way rotation probe. Two filters are installed and thermally anchored to the mixing chamber stage to reduce the
electron temperature: a Quantum Machines Qfilter with a 65kHz RC circuit and a 225MHz LC circuit, and a home-
made twisted-pair copper tape filter similar to the one mentioned above. Basel Precision Instruments SP983c-IF
current preamplifiers and SP1004 voltage preamplifiers were used to achieve lower measurement noise. A Yokogawa
GS210 was used to apply DC currents to devices through a 10MΩ bias resistor. Other electronic instruments used in
dilution refrigerator measurements are the same as those used in device pre-characterization. The temperature was
measured using a calibrated RX-102A thermometer mounted on the sample probe. The temperature was controlled
using a probe heater mounted close to both the thermometer and the thermal anchors of the wires, to guarantee
good thermal connection among devices, the thermometer, and the heater.

The remaining dilution refrigerator measurements were performed in a wet Oxford Kelvinox TLM dilution refrig-
erator. Thermocoax cables were used from room temperature to 4K, followed by RC filters before connecting to the
sample. DC voltages were applied to the top and bottom gates using Yokogawa 7651 voltage sources. The AC cur-
rents and voltages were preamplified by DL-1211 current preamplifiers and SR560 voltage preamplifiers respectively,
then measured by SR830 lock-in amplifiers.

High magnetic field measurements (up to 18T) were taken using SCM-1 dilution refrigerator at the National
High Magnetic Field Laboratory, with an 18T superconducting magnet and a base temperature of about 20mK. A
home-made 20 cm twisted-pair copper tape filter was installed and immersed in the helium-3/helium-4 mixture to
facilitate thermalization and filter high-frequency Johnson noise. The aforementioned electronics were used in the
measurements.

By controlling voltages applied to the top and bottom gates (Vtg and Vbg), the electron density, n, and the
perpendicular electric displacement field, D, can be tuned independently, following relations: n = (ϵBNϵ0/e)(Vbg/dbg+
Vtg/dtg) and D = ±(ϵBNϵ0/2)(Vbg/dbg − Vtg/dtg). Here, ϵBN = 3 is the relative dielectric constant of hBN, ϵ0 is the
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vacuum permittivity, e is the elementary charge, and dbg (dtg) is the thickness of the bottom (top) hBN. In this
work, we defined D such that D > 0 corresponds to a displacement field oriented from the small twist angle moiré
towards the large twist angle moiré.

To map the anomalous Hall response shown in Figs. 2b, c and minimize the contribution from both the regular Hall
effect and Rxx mixing due to anisotropy, we measured Ryx at B = ±60mT and ±30mT. The anomalous Hall response
RAHE

yx is then calculated according to RAHE
yx = (R30mT

yx −R−30mT
yx )−(R60mT

yx −R−60mT
yx )/2. This procedure removes the

regular Hall component when its contribution to Ryx has a linear dependence on B, which is in general true for the
small B considered here. For the field sweep measurements shown in Figs. 2d-g, Ryx is antisymmetrized between
curves of opposite sweep direction, so that Ryx = (R

raw↑
yx (B)−R

raw↓
yx (−B))/2 (see Rraw

yx (B) in Extended Data Fig. 3).
Here, the arrows indicate the sweep direction of B.

C. Twist angle determination

We extract the interlayer twist angles of TTG devices through the following procedure: (1) By fitting the Landau
levels to the Strěda formula with the corresponding Chern numbers as extracted according to the quantized values of
Ryx, we can calibrate the top and bottom gate capacitances. (2) Using these capacitance values, the charge density
corresponding to νm = ±4 can be identified using Rxx peaks at integer fillings and Landau levels emanating from the
charge neutral point and the band extrema. (3) The smaller twist angle can be calculated: nν=±4 = ±8 sin2 θ12/

√
3a20 ≈

±8θ212/
√
3a20. The errors in θ12 depend on the uncertainty in the fits to Rxx peaks and Landau levels, which are less

than 0.05° in general.

The determination of the larger angle, θ23, is more challenging given that the breakdown voltage of the hBN
dielectric usually does not allow us to access ν±4 fillings for layers 2 and 3. Here, we comment on this issue for each
device. For Device A, for which we targeted θ23/θ12 = 2, the fact that the AHE is observed indicates that the system
relaxes to moiré periodic domains with the local angle ratio being exactly 2 (see Fig. 2h). When the global angle
ratio deviates from 2, these domains are still expected to form with smaller sizes as long as the deviation is small
[6]. Therefore, the physical properties of the system remain qualitatively the same regardless of the exact value of
θ23. For Device B1, for which we targeted θ23/θ12 = −2, we are able to dope to 4 holes per moiré unit cell of layer 2
and 3 (see results with extended gate ranges in Extended Data Fig. 11). From its density, we extract ∣θ23∣ = 2.59°
for Device B1. The extracted ratio between the two twist angles is −2.09, close to the target value. For Device
B2, Device C, and Device D, we targeted ratios of θ23/θ12 = −2,−3 and 3, respectively. The fact that we did not
observe any Rxx peaks corresponding to the supermoiré density [55] sets an upper bound on the supermoiré density,
and thus a lower bound on the supermoiré wavelength. From the width of the Rxx peak at charge neutrality, we
estimate lsm/lm ≳ 7 for the devices studied here. From this estimated minimum lsm, we can calculate the range of θ23
for each device, as shown in Extended Data Figs. 12c-e. The resultant twist angle ratio ranges are [−2.14,−1.86],
[−3.13,−2.87], and [2.92,3.07], for Device B2, Device C, and Device D, respectively. Although the exact values of
θ23 are unknown for these devices, we argue that all discussions and conclusions presented in the paper are valid
within the estimated θ23 ranges, since the main effect will be on the size of lsm (see Methods F). For Device E and
F, we targeted an interlayer twist between layers 2 and 3 of 15°. Within the possible error range, layer 3 will be
electronically decoupled, representing the asymptotic limit of both branches of the magic continuum. Therefore, we
argue that the exact value of θ23 is not important in these cases.

D. Correlated states of TTG moiré quasicrystals in finite magnetic fields

Extended Data Figure 4 shows Landau fan diagrams of our quasicrystalline TTG devices. Apart from quantum
Hall states emanating from band edges and the charge neutrality point, the most prominent features that develop
under an applied magnetic field exhibit Chern numbers C = ±5,±4,±3, as deduced from their Strěda n-B slopes.
These features extrapolate to a zero-field band fillings of νm = ±1,±2,±3, respectively. A similar sequence of correlated
Chern insulators has been reported in magic-angle twisted bilayer graphene [56–66], the microscopic nature of which
is likely the correlated Hofstadter ferromagnets [67].
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E. Further discussion of supermoiré-modulated superconductivity

The superconducting proximity model [28] gives the following temperature dependence of Rxx between the two
superconducting transitions, which we use to fit the experimental data:

Rxx(T ) = R
0
xx (1 −Aξn ln(

Bξn(1 − T /Tc)
2

T
)) . (1)

Here, R0
xx is the sample resistance after the islands become superconducting but before the proximity effect begins

to reduce the resistance, Tc is the superconducting transition temperature of the islands, and ξn is the normal metal
coherence length. Here, we neglect the temperature dependence of ξn and treat it as a fitting parameter, same as
A and B. The fitting results are shown in Extended Data Fig. 7. This model does not consider the BKT phase
transition and therefore is not a meaningful fit of the experimental data below the lower transition. The extracted
values of Tc match the higher transition temperatures of Rxx(T ) traces.

To better understand the nature of the two transitions, we measured differential resistance dVx/dIx as a function
of IDC and T , shown in Figs. 4c,d and Extended Data Fig. 8. At base temperature, two critical currents can be
identified as peaks of dVx/dIx. Between them, non-zero dVx/dIx is observed that is consistent with the flux-flow
regime of the Josephson junction array [68]. This phase evolves towards lower IDC with increasing temperature and
exists at IDC = 0 between the two transition temperatures, suggesting that part of the sample remains supercon-
ducting in this temperature range. This conclusion is corroborated by the measurements of Rxx(B) at different
T , shown in Extended Data Fig. 9. At temperatures above the higher transition, the increase of Rxx is propor-
tional to B2, as expected from the Drude model [69]. At temperatures between the two transitions, we observe
a linear magnetoresistance at small B, consistent with the behaviour of Josephson junction arrays at small vortex
densities [70].

For supermoiré-modulated superconductivity to emerge, two conditions must be satisfied: (1) lm ≪ lsm so that
the supermoiré potential can be viewed as a slow modulation of a local electronic structure, and (2) ξGL ≲ lSC < lsm
so that superconductivity can be established within certain regions in the supermoiré unit cell. Here, ξGL is the
Ginzburg-Landau coherence length, and lSC is the size of the superconducting islands between two transitions. The
first condition is supported by the absence of Rxx peaks at the supermoiré density [55], from which we estimate
lsm/lm ≳ 7 for the devices studied here as discussed in Methods C. To verify the second condition, we compare the
lsm and ξGL that we extract from the dependence of Rxx on B and T (see Extended Data Fig. 12, Methods F,
and Methods G). ξGL is about 15nm−50nm across different devices, less than the expected supermoiré wavelength,
lsm ≳ 100nm, for devices with θ23/θ12 ≈ −2 or 3.

It is worth noting that we did not observe oscillations of Rxx when the number of flux quanta per supermoiré unit
cell is an integer or a simple fraction, as reported in other Josephson junction array systems [32, 71]. Possible reasons
include considerable supermoiré disorder arising from twist angle variations and strain, as well as finite size effects.
Future investigations will benefit from advances in fabrication techniques that minimize supermoiré disorder, as well
as from scanning probes with moiré- or atomic-scale spatial resolution, which are essential for further studying the
effects of supermoiré on superconductivity. In Device C, where θ23/θ12 ≈ −3, the signatures of supermoiré-modulated
superconductivity are weak or absent within the superconducting phase space. This could originate from the weaker
d-dependence of the local electronic structure, as illustrated in Fig. 1h, suggesting that the third graphene layer is
weakly coupled in this system.

F. Supermoiré wavelength calculations

When the ratio between the two twist angles of a TTG heterostructure is close to a simple fraction, i.e., θ12/θ23 ≈ p/q
with p and q being small coprime integers, the resulting structure can be understood approximately in terms of a
commensurate moiré unit cell (consisting of p×p and q×q bilayer moiré unit cells defined by θ12 and θ23, respectively),
but with the offset between the two moiré patterns varying slowly at a supermoiré length scale given by

lsm =
a0

√

2q2 (1 − cos θ12) + 2p2 (1 − cos θ23) − 4 ∣pq∣ cos (
θ12+θ23

2
)
√
(1 − cos θ12) (1 − cos θ23)

. (2)

When both ∣θ12∣ and ∣θ23∣ are small and θ12/θ23 = p/q, this equation can be approximated as lsm ≈ 2a0/ ∣(p + q) θ12θ23∣.
In practice, we calculate lsm for arbitrary twist angle combinations by evaluating Eq. 2 for 1 ≤ ∣p∣, ∣q∣ ≤ 10 and choosing
the largest resulting value (Extended Data Figs. 12a, b).
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G. Extraction of ξGL

To extract ξGL, we analyse the magnetic field dependence of the superconducting transition temperature. For each
magnetic field, the Rxx(T ) trace above the higher transition is first fitted with a linear function of T to approximate
the normal-state resistance. The superconducting transition temperature Tc is then defined as the temperature at
which the measured resistance curve intersects 85%, 90%, or 95% of the fitted curve. The extracted Tc values are
fitted as a linear function of B, following the Ginzburg-Landau relation:

Tc

T 0
c

= 1 −
2πξ2GL

Φ0
B, (3)

where Φ0 = h/2e is the superconducting flux quantum, and T 0
c is the zero-field superconducting transition temper-

ature. The slope of the linear fit determines ξGL. While ξGL values extracted using different resistance thresholds
(85%, 90%, 95%) differ slightly, they exhibit consistent trends as a function of νm. In Extended Data Fig. 12, we
plot the 90% criterion value of ξGL as the data point, with the range defined by the 85% and 95% criteria shown
as error bars. Since the extraction is based on the field dependence of the higher transition, the obtained coherence
length characterizes the superconducting regions that exist between the two transitions.

H. Electronic structure calculations

In this section, we describe the electronic band structure calculation of θ12/θ23 ≈ p/q TTG shown in Fig. 1, which
are calculated using a continuum model for a commensurate p/q moiré supercell.

We start with the atomic lattice vectors for each graphene layer, given by the columns of the matrix Aℓ =R(θℓ)A0,
where ℓ = 1,2,3 labels the layer index, (θ1, θ2, θ3) = (−pθ0,0, qθ0) are the twist angles of the three layers, and

R(θ) = (
cos θ − sin θ
sin θ cos θ

) ; A0 = a0 (
1 1

2

0
√
3
2

) (4)

with a0 = 0.246nm. The moiré superlattice vectors are given by the columns of the matrix A12 ≡ (A
−1
1 −A

−1
2 )
−1 and

A23 ≡ (A
−1
2 −A

−1
3 )
−1. In general, these two moiré superlattices are incommensurate but, for small twist angles, are

almost commensurate pA12 ≈ qA23.

To proceed, we construct a local periodic structure. We consider a slight distortion of the lattices, which we denote
with a prime A′ℓ, for which the moiré scale structure is exactly periodic. Specifically, we take A′1 =A1 and A′3 =A3

to be unchanged, but slightly deform the middle layer as

A2 →A′2 = (
q

p + q
A−11 +

p

p + q
A−13 )

−1
(5)

which results in the new moiré superlattice vectors satisfying

pA′12 = qA
′
23 = (p + q) (A

−1
1 −A

−1
3 )
−1
≡Am (6)

thus defining a commensurate moiré unit cell Am. To see that this is a small modification of the actual structure at
small twist angles, notice that the deviation

A′2 −A2 =
2pq

p + q
iθ0σyA0 +O(θ

2
0) (7)

is only non-zero at order θ0 (in this analysis, we have assumed p/q ≠ −1).

We can now calculate the local electronic properties. We consider three graphene sheets in the commensurate
structure. Importantly, we allow each layer to be displaced in-plane according to a vector sℓ, such that the sublattice
σ ∈ {A,B} carbon atoms in layer ℓ are positioned at A′ℓ[(n,m)

T + tσ + sℓ], where tA = 0 and tB = (2/3,1/3)
T. This

shift is important to capture the local stacking configurations of trilayer graphene, which leads to different electronic
properties.

We model the electronic properties using the standard continuum model approach, which is valid at small twist
angles. We work in the Hilbert space spanned by {∣k, ℓ, σ⟩}, where k is momentum, ℓ = 1,2,3 is layer, and σ = A,B
is sublattice. Let B′ℓ = 2π(A

′
ℓ)
−T. We take k to be near the K ≡B0(2/3,1/3)

T point. The intralayer terms are given
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by the standard Dirac equation near the Kℓ =B
′
ℓ(2/3,1/3)

T point,

⟨k, ℓ, σ′∣H ∣k, ℓ, σ⟩ = vF (
0 eiθℓ[kx − iky − (Kℓ,x − iKℓ,y)]

c.c. 0
)
σ′σ

(8)

For the interlayer tunnelling terms, we keep the (most dominant) first harmonic terms. For adjacent layers ∣ℓ′−ℓ∣ = 1,
the non-zero interlayer tunnelling matrix elements are given by

⟨k + qℓ′ℓ
n , ℓ′, σ′∣H ∣k, ℓ, σ⟩ = T ℓ′ℓ

nσ′σ(k) (9)

for n = 0,1,2, indexes the three tunnelling matrix elements that shift momentum by qℓ′ℓ
n = (B′ℓ′ − B

′
ℓ)zn, with

z0 = (0,0)
T, z1 = (−1,0)

T, z2 = (−1,−1)
T. The matrix elements are given by

T ℓ′ℓ
nσ′σ(k) = we

2πizn⋅(sℓ−sℓ′)(1 + ξ(∣k +Bℓzn∣ − ∣K ∣)) (
1 κe−2πin/3

κe2πin/3 1
)
σ′σ

(10)

There are a few differences in comparison to the standard Bistritzer-MacDonald for twisted bilayer graphene [15].

First, we explicitly take the in-plane displacements sℓ into account via the phase factor e2πizn⋅(sℓ−sℓ′). While for a
bilayer, such a shift amounts to a redefinition of the origin, in the commensurate trilayer this shift is physical and
impacts the electronic band structure. Second, we keep the first-order correction in the momentum dependence of
the tunnelling term via the ξ term [6, 7, 72]. We use the parameters vF = 0.88 × 10

6 ms−1, w = 0.11 eV, ξ = −2.1 Å,
and κ = 0.68.

In terms of the atomic displacements sℓ, the vector connecting the AA12 and AA23 sites in the commensurate
structure is [4]

d =Am (
1

p
(s1 − s2) −

1

q
(s2 − s3)) (11)

The electronic structure only depends on sℓ through d modulo 1
∣pq∣Am. We take s2 = s3 = (0,0)

T and set s1 = (0,0)
T

for the d = 0 stacking, s1 =
1
∣q∣(1/3,1/3)

T for the d = δ stacking, and s1 =
1
∣q∣(1/2,0)

T for the d = β stacking

configurations.
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Extended Data Fig. 1. Circuit diagram and optical micrographs of TTG devices. a, Circuit diagram of TTG
surrounded by two hBN dielectric layers and top and bottom gate electrodes (Au top gate and graphite or PdAu bottom gate)
kept at electric potentials Vtg, Vbg relative to TTG. b, Device A. c, Device B1. d, Device B2. e, Device C. f , Device D. g,
Device E. h, Device F. Rxx and Ryx contacts used in this study are indicated by magenta dots for all devices. All scale bars
are 3µm.

Device Approximate θ23/θ12 νm of correlated states Corresponding figure

Device A 2 −1,−2,−3 Fig. 2a

Device B1 -2 8/3 Fig. 3a

Device B2 -2 −2,1,2,3 Extended Data Fig. 6b

Device C -3 −2,1,2,3 Fig. 3b

Device D 3 −2,1,2,3 Extended Data Figs. 5a,b

Device E > 5 −2,1,2,3 Extended Data Fig. 2a

Device F < −5 −3,−2,2,3 Extended Data Fig. 2b

Extended Data Table 1. Summary of the correlated states observed at B = 0.
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Extended Data Fig. 2. Correlated states and superconductivity in TTG with one graphene layer electronically
decoupled. a, Rxx versus νm and D measured at B = 0 and T = 300mK for Device E with θ12 = 1.11°, θ23 ≈ 15° (three layers
of graphene helically twisted), showing resistance peaks at charge neutrality (νm = 0), at the full filling of the first moiré bands
(νm = ±4), and at correlated states (νm = −2,1,2,3). The blue regions signal superconductivity. b, Same as a, measured
at T = 300mK for Device F with θ12 = 1.17°, θ23 ≈ −15° (three layers of graphene alternating twisted), showing correlated
states with peaked Rxx at νm = ±2. The lack of signatures for superconductivity is possibly due to the higher T or sample
not having the optimal twist angle. c, Rxx versus νm and T measured for Device E along the magenta lines marked in
a, demonstrating superconducting transitions on both electron- and hole-doped sides. Data is taken at D/ϵ0 = 0.47Vnm−1

(left) and −0.42Vnm−1 (right). d, Vxx versus IDC curves at various T , measured in Device E. Data is taken at νm = −3.77,
D/ϵ0 = 0.47Vnm−1. Bottom-right insets plot the same data in the log-log scale, sampled at finer temperature increments,
where TBKT = 0.37K can be extracted. Top-left insets show differential resistance dVx/dIx versus IDC and small perpendicular
magnetic field B, demonstrating Josephson interference patterns, which are evidence for robust superconductivity.
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and 3. a-c, Rxx versus νm and D measured at B = 0 and T ≈ 100mK for Device B1 (a), Device B2 (b), and Device D (c).
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Extended Data Fig. 9. Temperature dependent magnetoresistance across superconducting transitions. a,c, Rxx

versus νm and T measured for Device B2 at Vbg = −1.2V (a) and Device D at D/ϵ0 = −0.49Vnm−1 (c). Measurements under
the same conditions are also presented in Extended Data Fig. 6e left and Fig. 3f left, respectively. c and Fig. 3f left are not
identical, because they were taken in different measurement sessions and Device D changed slightly during the thermal cycle.
However, key properties of the sample, including correlated states and robust superconductivity with the two-step transition
behaviour, still remain. b,d, Magnetoresistance measured at different T . The measurement conditions for each curves shown
in b (d) are indicated by dots with the same colour code in a (c). Between the two transitions, both samples demonstrate
a linear magnetoresistance at small B, consistent with the behaviour of Josephson junction arrays with free-moving vortices.
Here, to remove the contribution from Ryx mixing, we plot symmetrized magnetoresistance Rsymm

xx , which is calculated from
the the measured Rxx using the relation Rsymm

xx (B) = (Rxx (B) +Rxx (−B)) /2.
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Extended Data Fig. 10. Schematic of supermoiré-modulated superconductivity in quasicrystalline TTG. Moiré
AA sites and supermoiré unit cell are labelled as in Fig. 1b. We use the twist angle values experimentally extracted for Device
B1. Due to the supermoiré-modulated local electronic structure, certain regions in the supermoiré unit cell—such as d = 0
shown here—can host superconductivity without global phase coherence between the two superconducting transitions. Inset
shows zoomed-in illustration of the superconducting region, which is larger than or comparable to the size of Cooper pairs,
given by the experimentally extracted Ginzburg–Landau coherence length.
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Extended Data Fig. 12. Comparison between supermoiré wavelength and Ginzburg-Landau coherence length.
a,b, Calculated supermoiré wavelength as a function of θ12 and θ23 for alternating-twisted TTG (a) and helically-twisted TTG
(b). See Methods F for calculation details. c-e, lsm calculated using Eq. 2 as a function of θ23 for Device B2 (c), Device C
(d), and Device D (e). Here, we use the experimental values of θ12 and targeted (p, q) in Eq. 2. Grey-shaded regions show the
θ23 ranges for each device, which are estimated from the absence of Rxx peaks corresponding to the supermoiré density (see
Methods C for details). These devices are marked in a,b using the same colour code, where the error bars are the estimated
θ23 range. f-h, Extracted Ginzburg-Landau coherence length ξGL versus νm for Device B1 (f), Device B2 (g), and Device D
(h). Colour maps show Rxx versus νm and T , reproduced from Extended Data Fig. 6d left (f), Extended Data Fig. 6e left
(g), and Extended Data Fig. 9c (h). See Methods G for details of ξGL extraction.
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